
Firebird 2.0 Language Reference Update
Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
4 Oct 2024, document version 1.2 — covers Firebird 2.0–2.0.6

Firebird 2.0 Language Reference Update
Everything new in Firebird SQL since InterBase 6

4 Oct 2024, document version 1.2 — covers Firebird 2.0–2.0.6
Paul Vinkenoog et al.

Table of Contents
1. Introduction ... 1

Versions covered .. 1
Authorship ... 2

2. Reserved words and keywords .. 3
Added since InterBase 6 ... 3

Newly reserved words .. 3
New keywords ... 3

Dropped since InterBase 6 .. 4
No longer reserved ... 4
No longer keywords ... 4

Possibly reserved in future versions .. 5
3. Miscellaneous language elements .. 6

-- (single-line comment) ... 6
Shorthand casts .. 6
CASE construct .. 7

Simple CASE ... 7
Searched CASE .. 8

4. Data types and subtypes ... 9
BIGINT data type ... 9
BLOB data type .. 9
New character sets ... 10
Character set NONE handling changed ... 11
New collations ... 11

5. DDL statements ... 13
ALTER DATABASE .. 13

BEGIN BACKUP ... 13
END BACKUP .. 14
ADD DIFFERENCE FILE ... 14
DROP DIFFERENCE FILE .. 14

ALTER DOMAIN .. 15
Rename domain ... 15
SET DEFAULT to any context variable .. 15

ALTER EXTERNAL FUNCTION ... 15
ALTER PROCEDURE .. 16

Default argument values ... 16
Restriction on altering used procedures ... 16

ALTER SEQUENCE ... 17
ALTER TABLE ... 17

ADD column: Context variables as defaults ... 17
ALTER COLUMN: DROP DEFAULT ... 18
ALTER COLUMN: SET DEFAULT .. 18
ALTER COLUMN: POSITION now 1-based ... 19
CHECK accepts NULL outcome ... 19
FOREIGN KEY without target column references PK ... 19
FOREIGN KEY creation no longer requires exclusive access .. 20
UNIQUE constraints now allow NULLs .. 20
USING INDEX subclause ... 20

ALTER TRIGGER .. 20
Multi-action triggers ... 21

iii

Firebird 2.0 Language Ref. Update

Restriction on altering used triggers .. 21
PLAN allowed in trigger code ... 21
ALTER TRIGGER no longer increments table change count ... 21

COMMENT ... 22
CREATE DATABASE .. 22

16 Kb page size supported .. 23
DIFFERENCE FILE parameter .. 23

CREATE DOMAIN .. 23
Context variables as defaults ... 23

CREATE EXCEPTION ... 23
Message length increased ... 24

CREATE GENERATOR .. 24
CREATE SEQUENCE preferred .. 24
Maximum number of generators significantly raised ... 24

CREATE INDEX ... 25
UNIQUE indices now allow NULLs .. 25
Indexing on expressions ... 25
Maximum index key length increased ... 26
Maximum number of indices per table increased .. 26

CREATE PROCEDURE .. 27
CREATE SEQUENCE .. 27
CREATE TABLE ... 28

CHECK accepts NULL outcome ... 28
Context variables as column defaults ... 29
FOREIGN KEY without target column references PK ... 29
FOREIGN KEY creation no longer requires exclusive access .. 29
UNIQUE constraints now allow NULLs .. 30
USING INDEX subclause ... 30

CREATE TRIGGER ... 31
Multi-action triggers ... 32
CREATE TRIGGER no longer increments table change count ... 32
PLAN allowed in trigger code ... 32

CREATE VIEW ... 33
Full SELECT syntax supported .. 33
PLAN subclause disallowed in 1.5, reallowed in 2.0 ... 33
Triggers on updatable views block auto-writethrough ... 33
View with non-participating NOT NULL columns in base table can be made insertable 34

CREATE OR ALTER EXCEPTION .. 34
CREATE OR ALTER PROCEDURE ... 35
CREATE OR ALTER TRIGGER .. 35
DECLARE EXTERNAL FUNCTION .. 35

BY DESCRIPTOR parameter passing .. 36
RETURNS PARAMETER n .. 36

DECLARE FILTER .. 36
DROP GENERATOR .. 37
DROP PROCEDURE .. 38

Restriction on dropping used procedures ... 38
DROP SEQUENCE .. 38
DROP TRIGGER ... 39

Restriction on dropping used triggers .. 39
DROP TRIGGER no longer increments table change count ... 39

RECREATE EXCEPTION ... 39

iv

Firebird 2.0 Language Ref. Update

RECREATE PROCEDURE .. 40
Restriction on recreating used procedures .. 40

RECREATE TABLE ... 40
RECREATE TRIGGER ... 40

Restriction on recreating used triggers ... 41
RECREATE VIEW ... 41
REVOKE ADMIN OPTION ... 41
SET GENERATOR ... 42

6. DML statements ... 43
DELETE ... 43

COLLATE subclause for text BLOB columns .. 43
ORDER BY ... 44
PLAN ... 44
Relation alias makes real name unavailable ... 44
ROWS .. 44

EXECUTE BLOCK .. 45
EXECUTE PROCEDURE .. 47
INSERT .. 48

RETURNING clause .. 49
UNION allowed in feeding SELECT ... 49

SELECT ... 50
Aggregate functions: Extended functionality .. 50
[AS] before relation alias .. 52
COLLATE subclause for text BLOB columns .. 52
Derived tables (“SELECT FROM SELECT”) .. 53
FIRST and SKIP .. 54
GROUP BY ... 55
HAVING: Stricter rules ... 56
JOIN .. 56
ORDER BY ... 57
PLAN ... 60
Relation alias makes real name unavailable ... 61
ROWS .. 61
UNION ... 62
WITH LOCK ... 63

UPDATE ... 64
COLLATE subclause for text BLOB columns .. 64
ORDER BY ... 65
PLAN ... 65
Relation alias makes real name unavailable ... 65
ROWS .. 65

7. Transaction control statements .. 67
RELEASE SAVEPOINT .. 67
ROLLBACK .. 67

ROLLBACK RETAIN ... 68
ROLLBACK TO SAVEPOINT ... 68

SAVEPOINT ... 69
Internal savepoints .. 70
Savepoints and PSQL ... 70

SET TRANSACTION ... 70
IGNORE LIMBO ... 71
LOCK TIMEOUT ... 71

v

Firebird 2.0 Language Ref. Update

NO AUTO UNDO .. 72
8. PSQL statements .. 73

BEGIN ... END blocks may be empty ... 73
BREAK .. 73
CLOSE cursor ... 74
DECLARE .. 74

DECLARE ... CURSOR .. 75
DECLARE [VARIABLE] with initialization ... 76

EXCEPTION ... 76
Rethrowing a caught exception ... 77
Providing a custom error message ... 77

EXECUTE PROCEDURE .. 77
EXECUTE STATEMENT .. 78

No data returned .. 78
One row of data returned .. 78
Any number of data rows returned .. 79
Caveats with EXECUTE STATEMENT .. 79

EXIT .. 80
FETCH cursor ... 80
FOR EXECUTE STATEMENT ... DO ... 81
FOR SELECT ... INTO ... DO .. 81

AS CURSOR clause ... 82
LEAVE ... 83
OPEN cursor ... 84
PLAN allowed in trigger code ... 84
UDFs callable as void functions .. 85
WHERE CURRENT OF invalid for view cursors .. 85

9. Context variables .. 86
CURRENT_CONNECTION ... 86
CURRENT_ROLE .. 86
CURRENT_TIME .. 87
CURRENT_TIMESTAMP ... 88
CURRENT_TRANSACTION ... 88
CURRENT_USER .. 89
DELETING ... 89
GDSCODE ... 90
INSERTING .. 90
NEW ... 91
'NOW' ... 91
OLD ... 92
ROW_COUNT .. 93
SQLCODE ... 93
UPDATING ... 94

10. Operators and predicates ... 95
NULL literals allowed as operands ... 95
|| (string concatenator) .. 95

Result type VARCHAR ... 95
Overflow checking ... 96

ALL ... 96
NULL literals allowed ... 96
UNION as subselect .. 96

ANY / SOME .. 96

vi

Firebird 2.0 Language Ref. Update

NULL literals allowed ... 96
UNION as subselect .. 97

IN .. 97
NULL literals allowed ... 97
UNION as subselect .. 97

IS [NOT] DISTINCT FROM .. 97
NEXT VALUE FOR ... 98
SOME .. 99

11. Internal functions .. 100
BIT_LENGTH() ... 100
CAST() ... 101
CHAR_LENGTH(), CHARACTER_LENGTH() ... 102
COALESCE() ... 103
EXTRACT() .. 104
GEN_ID() .. 105
IIF() ... 105
LOWER() .. 106
NULLIF() .. 106
OCTET_LENGTH() .. 107
RDB$GET_CONTEXT() .. 108
RDB$SET_CONTEXT() .. 109
SUBSTRING() ... 110
TRIM() ... 111
UPPER() ... 112

12. External functions (UDFs) .. 114
addDay ... 114
addHour ... 114
addMilliSecond .. 115
addMinute ... 115
addMonth ... 115
addSecond ... 116
addWeek ... 116
addYear ... 117
ascii_char .. 117
dow ... 118
dpower ... 118
getExactTimestamp .. 119
i64round ... 119
i64truncate .. 119
log ... 119
lower ... 120
lpad ... 121
ltrim ... 122
*nullif ... 123
*nvl ... 124
rand ... 125
right ... 125
round, i64round .. 125
rpad ... 126
rtrim ... 127
sdow ... 128
srand ... 129

vii

Firebird 2.0 Language Ref. Update

sright ... 129
string2blob .. 129
strlen ... 130
substr ... 130
substrlen ... 131
truncate, i64truncate ... 132

Appendix A: Notes ... 134
Character set NONE data accepted “as is” .. 134
Understanding the WITH LOCK clause ... 135

Syntax and behaviour ... 135
How the engine deals with WITH LOCK .. 136
The optional “OF <column-names>” sub-clause ... 137
Caveats using WITH LOCK ... 137
Examples using explicit locking .. 137

A note on CSTRING parameters .. 137
Passing NULL to UDFs in Firebird 2 ... 138

“Upgrading” ib_udf functions in an existing database .. 139
Maximum number of indices in different Firebird versions ... 139

Appendix B: Document History .. 140
Appendix C: License notice .. 144

viii

List of Tables
4.1. Character sets new in Firebird .. 10
4.2. Collations new in Firebird ... 11
5.1. Maximum indexable (VAR)CHAR length ... 26
5.2. Max. indices per table, Firebird 2.0 .. 26
6.1. NULLs placement in ordered columns ... 59
10.1. Comparison of [NOT] DISTINCT to “=” and “<>” .. 98
11.1. Possible CASTs .. 102
11.2. Ranges for EXTRACT results .. 104
11.3. Context variables in the SYSTEM namespace ... 108
A.1. How TPB settings affect explicit locking ... 135
A.2. Max. indices per table in Firebird 1.0 – 2.0 .. 139

ix

Chapter 1

Introduction

Tip

This documentation is outdated. Find a more recent Firebird Language Reference at Firebird 5.0 Language
Reference

For other documentation, visit Firebird Documentation Index

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.0.x.
It covers the following areas:

• Reserved words
• Data types and subtypes
• DDL statements (Data Definition Language)
• DML statements (Data Manipulation Language)
• Transaction control statements
• PSQL statements (Procedural SQL, used in stored procedures and triggers)
• Context variables
• Operators and predicates
• Internal functions
• UDFs (User Defined Functions, also known as external functions)

To have a complete Firebird 2.0 SQL reference, you need:

• The InterBase 6.0 beta SQL Reference (LangRef.pdf and/or SQLRef.html)
• This document

Topics not discussed in this document include:

• ODS versions
• Bug listings
• Installation and configuration
• Upgrade, migration and compatibility
• Server architectures
• API functions
• Connection protocols
• Tools and utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other
documentation via the Firebird Documentation Index at https://www.firebirdsql.org/en/documentation/.

Versions covered
This document covers all Firebird versions up to and including 2.0.6.

1

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/en/documentation/
https://www.firebirdsql.org/en/documentation/

Introduction

Authorship
Most of this document was written by the main author. The remainder (5–7%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included material are:

• J. Beesley
• Helen Borrie
• Arno Brinkman
• Frank Ingermann
• Alex Peshkov
• Nickolay Samofatov
• Dmitry Yemanov

2

Chapter 2

Reserved words and keywords
Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. table or procedure
names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless you have
a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. You can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT
BIT_LENGTH
BOTH
CASE
CHAR_LENGTH
CHARACTER_LENGTH
CLOSE
CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
FETCH
LEADING
LOWER
OCTET_LENGTH
OPEN
RECREATE
RELEASE
ROW_COUNT
ROWS
SAVEPOINT
TRAILING
TRIM
USING

New keywords

The following words have been added to Firebird as non-reserved keywords:

3

Reserved words and keywords

BACKUP
BLOCK
COALESCE
COLLATION
COMMENT
DELETING
DIFFERENCE
IIF
INSERTING
LAST
LEAVE
LOCK
NEXT
NULLIF
NULLS
RESTART
RETURNING
SCALAR_ARRAY
SEQUENCE
STATEMENT
UPDATING

Dropped since InterBase 6

No longer reserved

The following words are no longer reserved in Firebird 2.0, but are still recognized as keywords:

ACTION
CASCADE
FREE_IT
RESTRICT
ROLE
TYPE
WEEKDAY
YEARDAY

No longer keywords

The following are no longer keywords in Firebird 2.0:

BASENAME
CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF_SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

4

Reserved words and keywords

Possibly reserved in future versions
The following words are not reserved in Firebird 2.0, but should be avoided as identifiers because they will
likely be reserved in future versions:

ABS
BOOLEAN
FALSE
TRUE
UNKNOWN

5

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Tip

Find a more recent version at Firebird 5.0 Language Reference: Comments

Available in: DSQL, PSQL

Added in: 1.0

Changed in: 1.5

Description: A line starting with “--” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out a line of SQL.

In Firebird 1.5 and up, the “--” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

-- a table to store our valued customers in:
create table Customers (
 name varchar(32),
 added_by varchar(24),
 custno varchar(8),
 purchases integer -- number of purchases
)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts

Tip

Find a more recent version at Firebird 5.0 Language Reference: Datetime Literals

Available in: DSQL, ESQL, PSQL

6

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-structure-comments.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-datetime-literal

Miscellaneous language elements

Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

datatype 'date/timestring'

Examples:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

insert into Appointments
 (Employee_Id, Client_Id, App_date, App_time)
values
 (973, 8804, date 'today' + 2, time '16:00')

new.lastmod = timestamp 'now';

See also: CAST

CASE construct

Tip

Find a more recent version at Firebird 5.0 Language Reference: CASE

Available in: DSQL, PSQL

Added in: 1.5

Description: A CASE construct returns exactly one value from a number of possibilities. There are two syntactic
variants:

• The simple CASE, comparable to a Pascal case or a C switch.
• The searched CASE, which works like a series of “if ... else if ... else if” clauses.

Simple CASE

Syntax:

CASE <expression>
 WHEN <exp1> THEN result1
 WHEN <exp2> THEN result2
 ...
 [ELSE defaultresult]
END

When this variant is used, <expression> is compared to <exp1>, <exp2> etc., until a match is found, upon
which the corresponding result is returned. If there is no match and there is an ELSE clause, defaultresult
is returned. If there is no match and no ELSE clause, NULL is returned.

7

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-conditional-case

Miscellaneous language elements

The match is determined with the “=” operator, so if <expression> is NULL, it won't match any of the
<expN>s, not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

Example:

select name,
 age,
 case upper(sex)
 when 'M' then 'Male'
 when 'F' then 'Female'
 else 'Unknown'
 end,
 religion
from people

Searched CASE

Syntax:

CASE
 WHEN <bool_exp1> THEN result1
 WHEN <bool_exp2> THEN result2
 ...
 [ELSE defaultresult]
END

Here, the <bool_expN>s are tests that give a ternary boolean result: true, false, or NULL. The first
expression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause,
defaultresult is returned. If no expression is TRUE and there is no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
 when Age >= 18 then 'Yes'
 when Age < 18 then 'No'
 else 'Unsure'
 end;

8

Chapter 4

Data types and subtypes

BIGINT data type

Tip

Find a more recent version at Firebird 5.0 Language Reference: BIGINT

Added in: 1.5

Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It is available in Dialect 3 only.

BIGINT numbers range from -263 .. 263-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Example:

create table WholeLottaRecords (
 id bigint not null primary key,
 description varchar(32)
)

BLOB data type

Tip

Find a more recent version at Firebird 5.0 Language Reference: Binary Data Types

Changed in: 2.0

Description: Several enhancements have been implemented for text BLOBs:

• DML COLLATE clauses are now supported.

• Equality comparisons can be performed on the full BLOB contents.

• Character set conversions are possible when assigning a BLOB to a BLOB or a string to a BLOB.
When defining binary BLOBs, the mnemonic binary can now be used instead of the integer 0.

Examples:

select NameBlob from MyTable
 where NameBlob collate pt_br = 'João'

9

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes.html#fblangref50-datatypes-bigint
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes-bnrytypes.html

Data types and subtypes

create table MyPictures (
 id int not null primary key,
 title varchar(40),
 description varchar(200),
 picture blob sub_type binary
)

New character sets
Added in: 1.0, 1.5, 2.0

The following table lists the character sets added in Firebird.

Table 4.1. Character sets new in Firebird

Name Max bytes/ch. Languages Added in

DOS737 1 Greek 1.5

DOS775 1 Baltic 1.5

DOS858 1 = DOS850 plus € sign 1.5

DOS862 1 Hebrew 1.5

DOS864 1 Arabic 1.5

DOS866 1 Russian 1.5

DOS869 1 Modern Greek 1.5

ISO8859_2 1 Latin-2, Central European 1.0

ISO8859_3 1 Latin-3, Southern European 1.5

ISO8859_4 1 Latin-4, Northern European 1.5

ISO8859_5 1 Cyrillic 1.5

ISO8859_6 1 Arabic 1.5

ISO8859_7 1 Greek 1.5

ISO8859_8 1 Hebrew 1.5

ISO8859_9 1 Latin-5, Turkish 1.5

ISO8859_13 1 Latin-7, Baltic Rim 1.5

KOI8R 1 Russian 2.0

KOI8U 1 Ukrainian 2.0

UTF8 (*) 4 All 2.0

WIN1255 1 Hebrew 1.5

WIN1256 1 Arabic 1.5

10

Data types and subtypes

Name Max bytes/ch. Languages Added in

WIN1257 1 Baltic 1.5

WIN1258 1 Vietnamese 2.0
(*)In Firebird 1.5, UTF8 is an alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
in its own right, without the drawbacks of UNICODE_FSS.

Character set NONE handling changed
Changed in: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer transliteration errors. For more details, see the Note at
the end of the book.

New collations
Added in: 1.0, 1.5, 1.5.1, 2.0

The following table lists the collations added in Firebird. The “Details” column is based on what has been
reported in the Release Notes and other documents. The information in this column is probably incomplete;
some collations with an empty Details field may still be case insensitive (ci), accent insensitive (ai) or dictionary-
sorted (dic).

Table 4.2. Collations new in Firebird

Character set Collation Language Details Added in

ES_ES_CI_AI Spanish ci, ai 2.0ISO8859_1

PT_BR Brazilian Portuguese ci, ai 2.0

CS_CZ Czech 1.0

ISO_HUN Hungarian 1.5

ISO8859_2

ISO_PLK Polish 2.0

ISO8859_13 LT_LT Lithuanian 1.5.1

UCS_BASIC All 2.0UTF8

UNICODE All dic 2.0

BS_BA Bosnian 2.0

PXW_HUN Hungarian ci 1.0

WIN_CZ Czech ci 2.0

WIN1250

WIN_CZ_CI_AI Czech ci, ai 2.0

11

Data types and subtypes

Character set Collation Language Details Added in

WIN1251 WIN1251_UA Ukrainian and Russian 1.5

WIN1252 WIN_PTBR Brazilian Portuguese ci, ai 2.0

WIN1257_EE Estonian dic 2.0

WIN1257_LT Lithuanian dic 2.0

WIN1257

WIN1257_LV Latvian dic 2.0

KOI8R KOI8R_RU Russian dic 2.0

KOI8U KOI8U_UA Ukrainian dic 2.0

A note on the UTF8 collations

The UCS_BASIC collation sorts in Unicode code-point order: A, B, a, b, á... This is exactly the same as UTF8
with no collation specified. UCS_BASIC was added to comply with the SQL standard.

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, á, b, B...

12

Chapter 5

DDL statements

Tip

Find a more recent version at Firebird 5.0 Language Reference: Data Definition (DDL) Statements

ALTER DATABASE

Tip

Find a more recent version at Firebird 5.0 Language Reference: DATABASE

Available in: DSQL, ESQL

Description: Alters a database's file organisation or toggles its “safe-to-copy” state.

Syntax:

ALTER {DATABASE | SCHEMA}
 [<add_sec_clause> [<add_sec_clause> ...]]
 [ADD DIFFERENCE FILE 'filepath' | DROP DIFFERENCE FILE]
 [{BEGIN | END} BACKUP]

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

<sec_file> ::= FILE 'filepath'
 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP

Available in: DSQL

Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

alter database begin backup

13

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

END BACKUP

Available in: DSQL

Added in: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

Example:

alter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE

Available in: DSQL

Added in: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goes into
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:

alter database add difference file 'C:\Firebird\Databases\Fruitbase.delta'

Notes:

• This statement doesn't really add any file. It just overrides the default path and name for the delta file that's
going to be created if and when the database enters copy-safe mode.

• If you provide a relative path here (or a bare filename), it will be appended to the current directory as seen
from the server. On Windows, this is often the system directory.

• If you want to change an existing path and name, DROP the old one first and then ADD the new one.

• When not overridden, the delta file gets the same path and filename as the database itself, but with the
extension .delta

DROP DIFFERENCE FILE

Available in: DSQL

Added in: 2.0

14

https://www.firebirdsql.org/en/documentation/

DDL statements

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop a file. It only erases the name and path that would
otherwise have been used the next time around and reverts to the default behaviour.

Example:

alter database drop difference file

ALTER DOMAIN

Tip

Find a more recent version at Firebird 5.0 Language Reference: DOMAIN

Available in: DSQL, ESQL

Rename domain

Added in: IB

Description: Renaming of a domain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:

alter domain posint to plusint

• The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable

Changed in: IB

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter domain DDate
 set default current_date

ALTER EXTERNAL FUNCTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

Available in: DSQL

15

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html

DDL statements

Added in: 2.0

Description: Alters an external function's module name and/or entry point. Existing dependencies are preserved.

Syntax:

ALTER EXTERNAL FUNCTION funcname
 <modification> [<modification>]

<modification> ::= ENTRY_POINT 'new-entry-point'
 | MODULE_NAME 'new-module-name'

Example:

alter external function Phi module_name 'NewUdfLib'

ALTER PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: PROCEDURE

Available in: DSQL, ESQL

Default argument values

Added in: 2.0

Description: You can now provide default values for stored procedure arguments, allowing the caller to omit
one or more items from the end of the argument list.

Syntax:

ALTER PROCEDURE procname (<inparam> [, <inparam> ...])
 ...

<inparam> ::= paramname datatype [{= | DEFAULT} value]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

alter procedure TestProc
 (a int, b int default 1007, s varchar(12) = '-')
 ...

Restriction on altering used procedures

Changed in: 2.0, 2.0.1

16

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html

DDL statements

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

ALTER SEQUENCE

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL

Added in: 2.0

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have always called a generator. “ALTER SEQUENCE ... RESTART WITH” is fully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:

ALTER SEQUENCE sequence-name RESTART WITH <newval>

<newval> ::= A signed 64-bit integer value.

Example:

alter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE is a mighty fine way of screwing up your database! Under normal
circumstances you should only use it right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

ALTER TABLE

Tip

Find a more recent version at Firebird 5.0 Language Reference: TABLE

Available in: DSQL, ESQL

ADD column: Context variables as defaults

Changed in: IB

17

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

Description: Any context variable that is assignment-compatible to the new column's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
 add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT

Available in: DSQL

Added in: 2.0

Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or – if the column's type is a DOMAIN with a default – the domain default
will resurface.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname DROP DEFAULT

Example:

alter table Trees alter Girth drop default

An error is raised if you use DROP DEFAULT on a column that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT

Available in: DSQL

Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
a default, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname SET DEFAULT <default>

<default> ::= literal-value | context-variable | NULL

Example:

alter table Customers alter EnteredBy set default current_user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

18

DDL statements

ALTER COLUMN: POSITION now 1-based

Changed in: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
is in accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname POSITION <newpos>

<newpos> ::= an integer between 1 and the number of columns

Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain 0-
based.

CHECK accepts NULL outcome

Changed in: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcome is false. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK

Changed in: IB

Description: If you create a foreign key without specifying a target column, it will reference the primary key
of the target table. This was already the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
 a int not null primary key,
 b int not null unique
);

create table beuk (
 b int
);

19

DDL statements

alter table beuk
 add constraint fk_beuk
 foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changed in: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

UNIQUE constraints now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLs.

USING INDEX subclause

Available in: DSQL

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of a primary, unique or foreign key definition.
Its purpose is to

• provide a user-defined name for the automatically created index that enforces the constraint, and
• optionally define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAINT constraint-name]
 <constraint-type> <constraint-definition>
 [USING [ASC[ENDING] | DESC[ENDING]] INDEX index_name]

For a full discussion and examples, see CREATE TABLE :: USING INDEX subclause.

ALTER TRIGGER

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIGGER

Available in: DSQL, ESQL

Description: Alters an existing trigger. The table or view that the trigger belongs to cannot be changed.

20

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Syntax:

ALTER TRIGGER name
 [ACTIVE | INACTIVE]
 [{BEFORE | AFTER} <action_list>]
 [POSITION number]
 [AS <trigger_body>]

<action_list> ::= <action> [OR <action> [OR <action>]]
<action> ::= INSERT | UPDATE | DELETE

Multi-action triggers

Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
a full discussion of this feature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code

Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count

Changed in: 1.0

Description: Each time you use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the data though). A backup-restore cycle is needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changes is in itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivate triggers during e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, alter or drop triggers for that table.

21

DDL statements

COMMENT

Tip

Find a more recent version at Firebird 5.0 Language Reference: Comments

Available in: DSQL

Added in: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fields in the system tables, from where client applications can pick them up.

Syntax:

COMMENT ON <object> IS {'sometext' | NULL}

<object> ::= DATABASE
 | <basic-type> objectname
 | COLUMN relationname.fieldname
 | PARAMETER procname.paramname

<basic-type> ::= CHARACTER SET | COLLATION | DOMAIN | EXCEPTION
 | EXTERNAL FUNCTION | FILTER | GENERATOR | INDEX
 | PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

Note

If you enter an empty comment (''), it will end up as NULL in the database.

Examples:

comment on database is 'Here''s where we keep all our customer records.'

comment on table Metals is 'Also for alloys'

comment on column Metals.IsAlloy is '0 = pure metal, 1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!'

CREATE DATABASE

Tip

Find a more recent version at Firebird 5.0 Language Reference: DATABASE

Available in: DSQL, ESQL

22

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-comment.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

Syntax (partial):

CREATE {DATABASE | SCHEMA}
 ...
 [PAGE_SIZE [=] <size>]
 ...
 [DIFFERENCE FILE 'filepath']

<size> ::= 1024 | 2048 | 4096 | 8192 | 16384

16 Kb page size supported
Changed in: 1.0

Description: The maximum database page size has been raised from 8192 to 16384 bytes.

DIFFERENCE FILE parameter
Added in: 2.0

Description: For a full description of this parameter, see ALTER DATABASE :: ADD DIFFERENCE FILE.

CREATE DOMAIN

Tip

Find a more recent version at Firebird 5.0 Language Reference: DOMAIN

Available in: DSQL, ESQL

Context variables as defaults
Changed in: IB

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create domain DDate as
 date
 default current_date
 not null

CREATE EXCEPTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXCEPTION

23

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

Available in: DSQL, ESQL

Message length increased

Changed in: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create exception Ex_TooManyManagers
 'Too many managers: An attempt was made to create more managers than the
 maximum defined in the Limits table. If you really need to create more
 managers than you have now, raise the limit first. However, please consult
 your department''s manager before doing so. Otherwise, your decision may
 be overturned later and the additional manager(s) removed.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE GENERATOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Changed in: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised

Changed in: 1.0

24

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) – 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

CREATE INDEX

Tip

Find a more recent version at Firebird 5.0 Language Reference: INDEX

Available in: DSQL, ESQL

Description: Creates an index on a table for faster searching, sorting and/or grouping.

Syntax:

CREATE [UNIQUE] [ASC[ENDING] | [DESC[ENDING]] INDEX indexname
 ON tablename
 { (<col> [, <col> ...]) | COMPUTED BY (expression) }

<col> ::= a column not of type ARRAY, BLOB or COMPUTED BY

UNIQUE indices now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify a single COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUP BY clause exactly matches the expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upname on persons computed by (upper(name));
commit;

-- the following queries will use ix_upname:
select * from persons order by upper(name);
select * from persons where upper(name) starting with 'VAN';
delete from persons where upper(name) = 'BROWN';
delete from persons where upper(name) = 'BROWN' and age > 65;

create descending index ix_events_yt

25

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-index.html

DDL statements

 on MyEvents
 computed by (extract(year from StartDate) || Town);
commit;

-- the following query will use ix_events_yt:
select * from MyEvents
 order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table 5.1. Maximum indexable (VAR)CHAR length

Maximum indexable string length per charset typePage size

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char

1024 247 123 82 61

2048 503 251 167 125

4096 1015 507 338 253

8192 2039 1019 679 509

16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changed in: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a “hard” ceiling, the number of indices creatable in practice is still limited by the
database page size and the number of columns per index, as shown in the table below.

Table 5.2. Max. indices per table, Firebird 2.0

Number of indices depending on column countPage size

1 col 2 cols 3 cols

1024 50 35 27

2048 101 72 56

4096 203 145 113

26

DDL statements

Number of indices depending on column countPage size

1 col 2 cols 3 cols

8192 408 291 227

16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For a full table also including Firebird versions 1.0–1.5, see the Notes at the end of the book.

CREATE PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: PROCEDURE

Available in: DSQL, ESQL

Changed in: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items from the end of the argument list.

Syntax:

CREATE PROCEDURE procname (<inparam> [, <inparam> ...])
 ...

<inparam> ::= paramname datatype [{= | DEFAULT} value]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

create procedure TestProc
 (a int, b int default 8, s varchar(12) = '')
 ...

CREATE SEQUENCE

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL

27

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Added in: 2.0

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence-name

Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. This is not recommended however.

Sequences (or generators) are always stored as 64-bit integer values, regardless of the database dialect. However:

• If the client dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.
• If generator values are fed into a 32-bit field or variable, all goes well until the actual value exceeds the 32-bit

range. At that point, a dialect 3 database will raise an error whereas a dialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE TABLE

Tip

Find a more recent version at Firebird 5.0 Language Reference: TABLE

Available in: DSQL, ESQL

CHECK accepts NULL outcome

Changed in: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcome is false.

Example:

Checks like these:

check (value > 10000)

check (Town like 'Amst%')

check (upper(value) in ('A', 'B', 'X'))

28

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

check (Minimum <= Maximum)

all fail in pre-2.0 Firebird versions if the value to be checked is NULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not null” predicates to your
CHECKs if they should continue to reject NULL input.

Context variables as column defaults

Changed in: IB

Description: Any context variable that is assignment-compatible to the column datatype can be used as a default.
This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create table MyData (
 id int not null primary key,
 record_created timestamp default current_timestamp,
 ...
)

FOREIGN KEY without target column references PK

Changed in: IB

Description: If you create a foreign key without specifying a target column, it will reference the primary key
of the target table. This was already the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
 a int not null primary key,
 b int not null unique
);

create table beuk (
 b int references eik
);

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changed in: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

29

DDL statements

UNIQUE constraints now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is a little complicated:

• Multiple rows having all the UK columns NULL are allowed.

• Multiple rows having a different subset of UK colums NULL are allowed.

• Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

• Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

One way of summarizing this is as follows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just as if they constituted the entire unique key.

USING INDEX subclause

Available in: DSQL

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of a primary, unique or foreign key definition.
Its purpose is to

• provide a user-defined name for the automatically created index that enforces the constraint, and
• optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (this is new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAINT constraint-name]
 <constraint-type> <constraint-definition>

30

DDL statements

 [USING [ASC[ENDING] | DESC[ENDING]] INDEX index_name]

Examples:

The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table customers (
 custno int not null constraint pk_cust primary key using index ix_custno,
 ...

This, however:

create table customers (
 custno int not null primary key using index ix_custno,
 ...

...will give you a PK constraint called INTEG_7 or something similar, and an index IX_CUSTNO.

Some more examples:

create table people (
 id int not null,
 nickname varchar(12) not null,
 country char(4),
 ..
 ..
 constraint pk_people primary key (id),
 constraint uk_nickname unique (nickname) using index ix_nick
)

alter table people
 add constraint fk_people_country
 foreign key (country) references countries(code)
 using desc index ix_people_country

Important

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keys referencing it descending as well.

CREATE TRIGGER

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIGGER

Available in: DSQL, ESQL

Description: Creates a trigger, i.e. a block of PSQL code that is executed automatically before or after certain
mutations to a table or view.

Syntax:

CREATE TRIGGER name FOR {table | view}

31

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <action_list>
 [POSITION number]
 AS
 <trigger_body>

<action_list> ::= <action> [OR <action> [OR <action>]]
<action> ::= INSERT | UPDATE | DELETE

Multi-action triggers

Added in: 1.5

Description: Triggers can now be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (INSERTING, UPDATING and DELETING) have been added
so you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
 before insert or update
as
begin
 /* conditional code when inserting: */
 if (inserting and new.id is null)
 then new.id = gen_id(gen_partrec_id, 1);

 /* common code: */
 new.partname_upper = upper(new.partname);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

• If you try to read their field values, NULL is returned.
• If you try to assign values to them, a runtime exception is thrown.

CREATE TRIGGER no longer increments table change count

Changed in: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code

Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

32

DDL statements

CREATE VIEW

Tip

Find a more recent version at Firebird 5.0 Language Reference: VIEW

Available in: DSQL, ESQL

Full SELECT syntax supported

Changed in: 2.0

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements.
Consequently, the following elements are (re)allowed in view definitions: FIRST, SKIP, ROWS, ORDER BY,
PLAN and UNION.

Note

The use of a UNION within a view is currently only supported if you supply a column list for the view (this
list is normally optional):

create view vplanes (make, model) as
 select make, model from jets
 union
 select make, model from props
 union
 select make, model from gliders

In Firebird 2.5, the column list will become optional also for views with UNIONs.

PLAN subclause disallowed in 1.5, reallowed in 2.0

Changed in: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
a PLAN is allowed again.

Triggers on updatable views block auto-writethrough

Changed in: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, this misbehaviour has been corrected: now if you define a trigger on a naturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.

33

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html

DDL statements

This is in accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table
can be made insertable

Changed in: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it is insertable:

create table base (x int not null, y int not null);

create view vbase as select x from base;

set term #;
create trigger bi_base for vbase before insert
as
begin
 if (new.x is null) then new.x = 33;
 insert into base values (new.x, 0);
end#
set term ;#

Notes:

• Please notice that the problem described above only occurred for NOT NULL columns that were left outside
the view.

• Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was a risk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

CREATE OR ALTER EXCEPTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXCEPTION

34

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

Available in: DSQL

Added in: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

CREATE OR ALTER PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: PROCEDURE

Available in: DSQL

Added in: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

CREATE OR ALTER TRIGGER

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIGGER

Available in: DSQL

Added in: 1.5

Description: If the trigger does not yet exist, it is created just as if CREATE TRIGGER were used. If it already
exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE TRIGGER.

DECLARE EXTERNAL FUNCTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

Available in: DSQL, ESQL

35

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html

DDL statements

Description: This statement makes an external function (UDF) known to the database.

Syntax:

DECLARE EXTERNAL FUNCTION localname
 [<arg_type_decl> [, <arg_type_decl> ...]]
 RETURNS {<return_type_decl> | PARAMETER 1-based_pos} [FREE_IT]
 ENTRY_POINT 'function_name' MODULE_NAME 'library_name'

<arg_type_decl> ::= sqltype [BY DESCRIPTOR] | CSTRING(length)
<return_type_decl> ::= sqltype [BY {DESCRIPTOR|VALUE}] | CSTRING(length)

Restrictions

• The BY DESCRIPTOR passing method is not supported in ESQL.

You may choose localname freely; this is the name by which the function will be known to your database.
You may also vary the length argument of CSTRING parameters (more about CSTRINGs in the note near the
end of the book).

BY DESCRIPTOR parameter passing

Available in: DSQL

Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLs in a meaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work – on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Available in: DSQL, ESQL

Added in: IB 6

Description: In order to return a BLOB, an extra input parameter must be declared and a “RETURNS PARAMETER
n” clause added – n being the position of said parameter. This clause dates back to InterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Developer's Guide though).

DECLARE FILTER

Tip

Find a more recent version at Firebird 5.0 Language Reference: FILTER

Available in: DSQL, ESQL

36

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-filter.html

DDL statements

Changed in: 2.0

Description: Makes a BLOB filter available to the database.

Syntax:

DECLARE FILTER filtername
 INPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
 ENTRY_POINT 'function_name' MODULE_NAME 'library_name'

<sub_type> ::= number | <mnemonic>
<mnemonic> ::= binary | text | blr | acl | ranges | summary | format
 | transaction_description | external_file_description
 | user_defined

• In Firebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring a filter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

• The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The binary mnemonic for subtype 0 was also added in Firebird 2. The predefined
mnemonics are case-insensitive.

Example:

declare filter Funnel
 input_type blr output_type text
 entry_point 'blr2asc' module_name 'myfilterlib'

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDB$TYPES system table as shown below. Once committed, the mnemonics can be used in subsequent
filter declarations.

insert into rdb$types (rdb$field_name, rdb$type, rdb$type_name)
 values ('RDB$FIELD_SUB_TYPE', -33, 'MIDI')

The value for rdb$field_name must always be 'RDB$FIELD_SUB_TYPE'. If you define your mnemonics in
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

DROP GENERATOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL

Added in: 1.0

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

37

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Syntax:

DROP GENERATOR generator-name

From Firebird 2.0 onward, the SQL-compliant DROP SEQUENCE syntax is preferred.

DROP PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: PROCEDURE

Available in: DSQL, ESQL

Restriction on dropping used procedures

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP SEQUENCE

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL

Added in: 2.0

Description: Removes a sequence or generator from the database. Its (very small) storage space will be freed for
re-use after a backup-restore cycle. SEQUENCE is the SQL-compliant term for what InterBase and Firebird have
always called a generator. DROP SEQUENCE is fully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.

Syntax:

DROP SEQUENCE sequence-name

Example:

drop sequence seqtest

See also: CREATE SEQUENCE

38

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

DROP TRIGGER

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIGGER

Available in: DSQL, ESQL

Restriction on dropping used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count

Changed in: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE EXCEPTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXCEPTION

Available in: DSQL

Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. This wlll fail if there are existing dependencies on
the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

39

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

RECREATE PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: PROCEDURE

Available in: DSQL

Added in: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists,
RECREATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if
the existing SP is in use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE TABLE

Tip

Find a more recent version at Firebird 5.0 Language Reference: TABLE

Available in: DSQL

Added in: 1.0

Description: Creates or recreates a table. If a table with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its data in the process!) and create a new table. RECREATE TABLE will fail if the
existing table is in use.

Syntax: Exactly the same as CREATE TABLE.

RECREATE TRIGGER

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIGGER

40

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Available in: DSQL

Added in: 2.0

Description: Creates or recreates a trigger. If a trigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger is in use.

Syntax: Exactly the same as CREATE TRIGGER.

Restriction on recreating used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE VIEW

Tip

Find a more recent version at Firebird 5.0 Language Reference: VIEW

Available in: DSQL

Added in: 1.5

Description: Creates or recreates a view. If a view with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view is in use.

Syntax: Exactly the same as CREATE VIEW.

REVOKE ADMIN OPTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: Statements for Revoking Privileges

Available in: DSQL

Added in: 2.0

Description: Revokes a previously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking the role itself. Multiple roles and/or multiple grantees can be handled in one statement.

Syntax:

REVOKE ADMIN OPTION FOR <role-list> FROM <grantee-list>

41

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-security-revoking.html

DDL statements

<role-list> ::= role [, role ...]
<grantee-list> ::= [USER] <grantee> [, [USER] <grantee> ...]
<grantee> ::= username | PUBLIC

Example:

revoke admin option for manager from john, paul, george, ringo

If a user has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

SET GENERATOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Available in: DSQL, ESQL

Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-
compliant ALTER SEQUENCE syntax is preferred.

Syntax:

SET GENERATOR generator-name TO <new-value>

<new-value> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

42

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

Chapter 6

DML statements

Tip

Find a more recent version at Firebird 5.0 Language Reference: Data Manipulation (DML) Statements

DELETE

Tip

Find a more recent version at Firebird 5.0 Language Reference: DELETE

Available in: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
 [TRANSACTION name]
 FROM {tablename | viewname} [[AS] alias]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]

<m>, <n> ::= Any expression evaluating to an integer.

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL

statement to create a cursor.
• The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

Example:

delete from MyTable

43

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-delete.html

DML statements

 where NameBlob collate pt_br = 'João'

ORDER BY

Available in: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN

Available in: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows a PLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

delete from Cities where name starting 'Alex'

delete from Cities where Cities.name starting 'Alex'

delete from Cities C where name starting 'Alex'

delete from Cities C where C.name starting 'Alex'

No longer possible:

delete from Cities C where Cities.name starting 'Alex'

ROWS

Available in: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows deleted to a specified number or range.

44

DML statements

Syntax:

ROWS <m> [TO <n>]

<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m, the deletion is limited to the first m rows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

• If m > the total number of rows in the dataset, the entire set is deleted.
• If m = 0, no rows are deleted.
• If m < 0, an error is raised.

With two arguments m and n, the deletion is limited to rows m to n inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, no rows are deleted.
• If m lies within the set but n doesn't, the rows from m to the end of the set are deleted.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are deleted.
• If n < m-1, an error is raised.

ROWS can also be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXECUTE BLOCK

Available in: DSQL

Added in: 2.0

Description: Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL within a DSQL context.

Syntax:

EXECUTE BLOCK [(<inparams>)]
 [RETURNS (<outparams>)]
AS
 [<declarations>]
BEGIN
 [<PSQL statements>]
END

<inparams> ::= paramname type = ? [, <inparams>]

45

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execblock.html

DML statements

<outparams> ::= paramname type [, <outparams>]
<declarations> ::= See PSQL::DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execute block
as
declare i int = 0;
begin
 while (i < 128) do
 begin
 insert into AsciiTable values (:i, ascii_char(:i));
 i = i + 1;
 end
end

The next example calculates the geometric mean of two numbers and returns it to the user:

execute block (x double precision = ?, y double precision = ?)
returns (gmean double precision)
as
begin
 gmean = sqrt(x*y);
 suspend;
end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all – see the notes below.

Our last example takes two integer values, smallest and largest. For all the numbers in the range
smallest .. largest, the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (number int, square bigint, cube bigint, fourth bigint)
as
begin
 number = smallest;
 while (number <= largest) do
 begin
 square = number * number;
 cube = number * square;
 fourth = number * cube;
 suspend;
 number = number + 1;
 end
end

Again, it depends on the client software if and how you can set the parameter values.

Notes:

• Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

46

DML statements

set term #;
execute block (...)
as
begin
 statement1;
 statement2;
end
#
set term ;#

In Firebird's isql client you must set the terminator to something other than “;” before you type in the
EXECUTE BLOCK statement. Otherwise isql, being line-oriented, will try to execute the part you have entered
as soon as it encounters the first semicolon.

• Executing a block without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but before it is executed. This requires special provisions,
which not every client application offers. (Firebird's own isql, for one, doesn't.)

• The server only accepts question marks (“?”) as placeholders for the input values, not “:a”, “:MyParam”
etc., or literal values. Client software may support the “:xxx” form though, which it will preprocess before
sending it to the server.

• If the block has output parameters, you must use SUSPEND or nothing will be returned.

• Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

EXECUTE PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Available in: DSQL, ESQL, PSQL

Changed in: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x as well as in InterBase, any input parameters for the
SP must be supplied as literals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE procname
 [TRANSACTION transaction]
 [<in_item> [, <in_item> ...]]
 [RETURNING_VALUES <out_item> [, <out_item> ...]]

<in_item> ::= <inparam> [<nullind>]
<out_item> ::= <outvar> [<nullind>]
<inparam> ::= an expression evaluating to the declared parameter type
<outvar> ::= a host language or PSQL variable to receive the return value

47

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

DML statements

<nullind> ::= [INDICATOR]:host_lang_intvar

Notes

• TRANSACTION clauses are not supported in PSQL.

• Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

• NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

• In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:”). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.Examples:

In PSQL (with optional colons):

execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

The same call in ESQL (with obligatory colons):

exec sql
 execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

...and in Firebird's command-line utility isql (with literal parameters):

execute procedure MakeFullName
 'J', 'Edgar', 'Hoover';

Note: In isql, don't use RETURNING_VALUES. Any output values are shown automatically.

Finally, a PSQL example with expression parameters, only possible in Firebird 1.5 and up:

execute procedure MakeFullName
 'Mr./Mrs. ' || FirstName, MiddleName, upper(LastName)
 returning_values FullName;

INSERT

Tip

Find a more recent version at Firebird 5.0 Language Reference: INSERT

Available in: DSQL, ESQL, PSQL

Changed in: 2.0

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be given
in the VALUES clause (in which case exactly one row is inserted) or they can come from a SELECT statement.

48

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-insert.html

DML statements

Syntax:

INSERT [TRANSACTION name]
 INTO {tablename | viewname} [(<columns>)]
 {VALUES (<values>) [RETURNING <values> [INTO <variables>]]
 | <select_expr>}

<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]
<variables> ::= :varname [, :varname ...]
<select_expr> ::= a SELECT returning a set whose columns fit the target

Restrictions

• The TRANSACTION directive is only available in ESQL.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• The trigger context variables OLD and NEW must not be preceded by a colon (“:”).
• New in 2.0: No column may appear more than once in the insert list.

RETURNING clause

Available in: DSQL, PSQL

Added in: 2.0

Description: An “INSERT ... VALUES” query may optionally specify a RETURNING clause in order to return the
values that have actually been stored. The clause, if present, need not contain all of the insert columns and may
also contain other columns or expressions. The returned values reflect any changes that may have been made
in BEFORE tiggers, but not those in AFTER triggers.

Example:

insert into Scholars (firstname, lastname, address, phone, email)
 values ('Henry', 'Higgins', '27A Wimpole Street', '3231212', null)
 returning lastname, fullname, id

Note: In Firebird 2.0, the RETURNING clause is only supported for “INSERT ... VALUES” queries. With
“INSERT ... SELECT” it is rejected, even if it concerns a singleton select. This limitation will be lifted in version
2.1.

UNION allowed in feeding SELECT

Changed in: 2.0

Description: A SELECT query used in an INSERT statement may now be a UNION.

Example:

insert into Members (number, name)
 select number, name from NewMembers where Accepted = 1
 union
 select number, name from SuspendedMembers where Vindicated = 1

49

DML statements

SELECT

Tip

Find a more recent version at Firebird 5.0 Language Reference: SELECT

Available in: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality

Changed in: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:

select
 r.rdb$relation_name as "Table name",
 (select max(i.rdb$statistics) || ' (' || count(*) || ')'
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name
) as "Max. IndexSel (# fields)"
from
 rdb$relations r
 join rdb$indices i on (i.rdb$relation_name = r.rdb$relation_name)
group by r.rdb$relation_name
having max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on a table, followed by the table's field count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contexts in a single expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

Since Firebird 1.5 it is possible to use aggregate functions and/or expressions contained in the GROUP BY clause
inside a subquery.

50

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html#fblangref50-dml-select

DML statements

Examples:

This query returns each table's ID and field count. The subquery refers to flds.rdb
$relation_name, which is also a GROUP BY item:

select
 flds.rdb$relation_name as "Relation name",
 (select rels.rdb$relation_id
 from rdb$relations rels
 where rels.rdb$relation_name = flds.rdb$relation_name
) as "ID",
 count(*) as "Fields"
from rdb$relation_fields flds
group by flds.rdb$relation_name

The next query shows the last field from each table and and its 1-based position. It uses the aggregate
function MAX in a subquery.

select
 flds.rdb$relation_name as "Table",
 (select flds2.rdb$field_name
 from rdb$relation_fields flds2
 where
 flds2.rdb$relation_name = flds.rdb$relation_name
 and flds2.rdb$field_position = max(flds.rdb$field_position)
) as "Last field",
 max(flds.rdb$field_position) + 1 as "Last fieldpos"
from rdb$relation_fields flds
group by 1

The subquery also contains the GROUP BY item flds.rdb$relation_name, but that's not
immediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions

Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.

Example:

select
 r.rdb$relation_name as "Table",
 sum((select count(*)
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name)
) as "Ind. x Fields"
from
 rdb$relations r
 join rdb$indices i
 on (i.rdb$relation_name = r.rdb$relation_name)
group by
 r.rdb$relation_name

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from a lower
SQL context. Direct nesting of aggregate function calls, as in “COUNT(MAX(price))”, is still forbidden and
punishable by exception.

51

DML statements

Example: See under Subqueries inside aggregate functions, where COUNT() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can be included in the HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in a HAVING or ORDER BY item contains
a column name, it is only accepted if one of the following is true:

• The column name appears in an aggregate function call (e.g. “HAVING MAX(SALARY) > 10000”).

• The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || '!'”
or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause – even if these expressions don't appear as such
in the SELECT or GROUP BY list.

[AS] before relation alias

Added in: IB

Description: The keyword AS can optionally be placed before a relation alias, just as it can be placed before a
column alias. This feature dates back to InterBase times, but wasn't documented in the IB Language Reference.

Syntax:

SELECT ... FROM <relation> [AS] alias

<relation> ::= A table, view, or selectable SP

Examples:

select order_no, total, fullname
 from orders as o join customers as c on o.cust_id = c.cust_id

select order_no, total, fullname
 from orders o join customers c on o.cust_id = c.cust_id

The two queries are fully equivalent.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

Example:

select NameBlob from MyTable
 where NameBlob collate pt_br = 'João'

52

DML statements

Derived tables (“SELECT FROM SELECT”)

Added in: 2.0

Description: A derived table is the result set of a SELECT query, used in an outer SELECT as if it were an ordinary
table. In other words, it is a subquery in the FROM clause.

Syntax:

(select-query)
 [[AS] derived-table-alias]
 [(<derived-column-aliases>)]

<derived-column-aliases> := column-alias [, column-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains all the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount
 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

select dbinfo.descr,
 dbinfo.def_charset
from (select * from rdb$database) dbinfo
 (descr, rel_id, sec_class, def_charset)

Notes:

• Derived tables can be nested.

• Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselects and
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
queries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

• Every column in a derived table must have a name. If it doesn't have one by nature (e.g. because it's a constant)
it must either be given an alias in the usual way, or a column aliases list must be added to the derived table
specification.

• The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

53

DML statements

• The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Available in: DSQL, PSQL

Added in: 1.0

Changed in: 1.5

Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:

SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <columns> FROM ...

<int-expr> ::= Any expression evaluating to an integer.
<columns> ::= The usual output column specifications.

Note

If <int-expr> is an integer literal or a query parameter, the “()” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows of the output
set are discarded and the first m rows of the remainder are returned.

SKIP 0 is allowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set is returned. If the number of rows in the dataset (or the
remainder after a SKIP) is less than the value given after FIRST, that smaller number of rows is returned. These
are valid results, not error situations.

Examples:

The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People

54

DML statements

 order by name asc

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
 id, name from People
 order by name asc

This query returns rows 81–100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

Two Gotchas with FIRST in subselects

• This:

delete from MyTable where ID in (select first 10 ID from MyTable)

will delete all of the rows in the table. Ouch! The sub-select is evaluating each 10 candidate rows for deletion,
deleting them, slipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

• Queries like:

...where F1 in (select first 5 F2 from Table2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

...where exists
 (select first 5 F2 from Table2
 where Table2.F2 = Table1.F1
 order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as a whole.

Syntax:

SELECT ... FROM ...
 GROUP BY <item> [, <item> ...]
 ...

<item> ::= column-name [COLLATE collation-name]
 | column-alias
 | column-position
 | expression

• Only non-negative integer literals will be interpreted as column positions. If they are outside the
range from 1 to the number of columns, an error is raised. Integer values resulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, as their value is the same for each row.

55

DML statements

• A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

• The select list may not contain expressions that can have different values within a group. To avoid
this, the rule of thumb is to include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or position).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at least twice.

Grouping by alias, position and expressions

Changed in: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:

These three queries all achieve the same result:

select strlen(lastname) as len_name, count(*)
 from people
 group by len_name

select strlen(lastname) as len_name, count(*)
 from people
 group by 1

select strlen(lastname) as len_name, count(*)
 from people
 group by strlen(lastname)

History: Grouping by UDF results was added in Firebird 1. Grouping by column positions, CASE outcomes and
a limited number of internal functions in Firebird 1.5. Firebird 2 added column aliases and expressions in general
as valid GROUP BY items (“expressions in general” absorbing the UDF, CASE and internal functions lot).

HAVING: Stricter rules

Changed in: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected

Changed in: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

56

DML statements

select buses.name, garages.name
 from buses join garages on buses.garage_id = garage.id
 where name = 'Phideaux III'

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
names in JOIN statements. Dialect 1 gives a warning but will execute the query anyway.

CROSS JOIN

Added in: 2.0

Description: Firebird 2.0 supports CROSS JOIN, which performs a full set multiplication on the tables involved.
Previously you had to achieve this by joining on a tautology (a condition that is always true) or by using the
comma syntax, now deprecated.

Syntax:

SELECT ...
 FROM table1 CROSS JOIN table2
 [WHERE ...]
 ...

Note: If you use CROSS JOIN, you can't use ON.

Example:

select * from Men cross join Women
order by Men.age, Women.age

-- old syntax:
-- select * from Men join Women on 1 = 1
-- order by Men.age, Women.age

-- comma syntax:
-- select * from Men, Women
-- order by Men.age, Women.age

ORDER BY

Syntax:

SELECT ... FROM ...
 ...
 ORDER BY <ordering-item> [, <ordering-item> ...]

<ordering-item> ::= {col-name | col-alias | col-position | expression}
 [COLLATE collation-name]
 [ASC[ENDING] | DESC[ENDING]]
 [NULLS {FIRST|LAST}]

Order by colum alias

Added in: 2.0

57

DML statements

Description: Firebird 2.0 and above support ordering by column alias.

Example:

select rdb$character_set_id as charset_id,
 rdb$collation_id as coll_id,
 rdb$collation_name as name
from rdb$collations
order by charset_id, coll_id

Ordering by column position causes * expansion

Changed in: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:

The following wasn't possible in pre-2.0 versions:

select * from rdb$collations
order by 3, 2

The following would sort the output set on Films.Director in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

select Books.*, Films.Director from Books, Films
order by 2

Ordering by expressions

Added in: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that
expressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note from Pairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

• The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

58

DML statements

• Only non-negative whole number literals are interpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, since its value is the same for each row.

NULLs placement

Changed in: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLs appear in the sorted column. Firebird 2.0 has changed the default placement of NULLs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as follows:

• In Firebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.

• In Firebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 6.1. NULLs placement in ordered columns

NULLs placementOrdering

Firebird 1 Firebird 1.5 Firebird 2

order by Field [asc] bottom bottom top

order by Field desc bottom bottom bottom

order by Field [asc | desc] nulls first — top top

order by Field [asc | desc] nulls last — bottom bottom

Notes

• Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering
behaviour under Firebird 2.0 and up.

• No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5,
that is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST
on descending sorts.

Examples:

select * from msg
 order by process_time desc nulls first

select * from document
 order by strlen(description) desc
 rows 10

select doc_number, doc_date from payorder
union all
select doc_number, doc_date from budgorder

59

DML statements

 order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements

Changed in: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN

Available in: DSQL, ESQL, PSQL

Description: Specifies a user plan for the data retrieval, overriding the plan that the optimizer would have
generated automatically.

Syntax:

PLAN <plan_expr>

<plan_expr> ::= [JOIN | [SORT] [MERGE]] (<plan_item> [, <plan_item> ...])

<plan_item> ::= <basic_item> | <plan_expr>

<basic_item> ::= {table | alias}
 {NATURAL
 | INDEX (<indexlist>))
 | ORDER index [INDEX (<indexlist>)]}

<indexlist> ::= index [, index ...]

Handling of user PLANs improved

Changed in: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANs:

• Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex outer joins.

• User-supplied plans will be checked for correctness in outer joins.

• Short-circuit optimization for user-supplied plans has been added.

• A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changed in: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).

Example:

plan (MyTable order ix_myfield index (ix_this, ix_that))

60

DML statements

PLAN must include all tables

Changed in: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but this is no longer the case.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

select pears from Fruit

select Fruit.pears from Fruit

select pears from Fruit F

select F.pears from Fruit F

No longer possible:

select Fruit.pears from Fruit F

ROWS

Available in: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

Syntax:

With a single SELECT:

SELECT <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]
 ROWS <m> [TO <n>]

<columns> ::= The usual output column specifications.
<m>, <n> ::= Any expression evaluating to an integer.

With a UNION:

SELECT [FIRST p] [SKIP q] <columns> FROM ... [WHERE ...]

61

DML statements

UNION [ALL | DISTINCT]
SELECT [FIRST r] [SKIP s] <columns> FROM ... [WHERE ...]
[ORDER BY ...]
ROWS <m> [TO <n>]

With a single argument m, the first m rows of the dataset are returned.

Points to note:

• If m > the total number of rows in the dataset, the entire set is returned.
• If m = 0, an empty set is returned.
• If m < 0, an error is raised.

With two arguments m and n, rows m to n of the dataset are returned, inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, an empty set is returned.
• If m lies within the set but n doesn't, the rows from m to the end of the set are returned.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, an empty set is returned.
• If n < m-1, an error is raised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returns the entire remainder of the set after skipping a given number of rows. (You can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rows in the set.)

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but is it valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after the
last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you have two
options: either use FIRST/SKIP on those SELECT statements (probably of limited use, as you can't use ORDER
BY on individual selects within a union), or convert them to derived tables with ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

UNION

Available in: DSQL, ESQL, PSQL

UNIONs in subqueries

Changed in: 2.0

Description: UNIONs are now allowed in subqueries. This applies not only to column-level subqueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union

62

DML statements

 select hourly_rate from acrobats)
order by hourly_rate

UNION DISTINCT

Added in: 2.0

Description: You can now use the optional DISTINCT keyword when defining a UNION. This will show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, is the default mode anyway, this doesn't add any new functionality.

Syntax:

SELECT (...) FROM (...)
UNION [DISTINCT | ALL]
SELECT (...) FROM (...)

Example:

select name, phone from translators
 union distinct
select name, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the same in both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK

Available in: DSQL, PSQL

Added in: 1.5

Description: WITH LOCK provides a limited explicit pessimistic locking capability for cautious use in conditions
where the affected row set is:

a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It is essential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 WITH LOCK

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

63

DML statements

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

• in a subquery specification;
• for joined sets;
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
• with a view;
• with the output of a selectable stored procedure;
• with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” is included in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPDATE

Available in: DSQL, ESQL, PSQL

Description: Changes values in a table (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTION name] {tablename | viewname} [[AS] alias]
 SET col = newval [, col = newval ...]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]

<m>, <n> ::= Any expression evaluating to an integer.

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL

statement to create a cursor.
• The PLAN, ORDER BY and ROWS clauses are not available in ESQL.
• New in 2.0: No column may be SET more than once in the same UPDATE statement.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

64

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-update.html

DML statements

Example:

update MyTable
 set NameBlobSp = 'Juan'
 where NameBlobBr collate pt_br = 'João'

ORDER BY

Available in: DSQL, PSQL

Added in: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN

Available in: DSQL, PSQL

Added in: 2.0

Description: UPDATE now allows a PLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

ROWS

Available in: DSQL, PSQL

Added in: 2.0

65

DML statements

Description: Limits the amount of rows updated to a specified number or range.

Syntax:

ROWS <m> [TO <n>]

<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m, the update is limited to the first m rows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

• If m > the total number of rows in the dataset, the entire set is updated.
• If m = 0, no rows are updated.
• If m < 0, an error is raised.

With two arguments m and n, the update is limited to rows m to n inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, no rows are updated.
• If m lies within the set but n doesn't, the rows from m to the end of the set are updated.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are updated.
• If n < m-1, an error is raised.

ROWS can also be used with the SELECT and DELETE statements.

66

Chapter 7

Transaction
control statements

Tip

Find a more recent version at Firebird 5.0 Language Reference: Transaction Control

RELEASE SAVEPOINT

Tip

Find a more recent version at Firebird 5.0 Language Reference: RELEASE SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Deletes a named savepoint, freeing up all the resources it binds.

Syntax:

RELEASE SAVEPOINT name [ONLY]

Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For a full discussion of savepoints, see SAVEPOINT.

ROLLBACK

Tip

Find a more recent version at Firebird 5.0 Language Reference: ROLLBACK

Available in: DSQL, ESQL

Syntax:

ROLLBACK [WORK]
 [TRANSACTION tr_name]

67

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-releasesp
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-rollback

Transaction control statements

 [RETAIN [SNAPSHOT] | TO [SAVEPOINT] sp_name | RELEASE]

• The TRANSACTION clause is only available in ESQL.

• The RELEASE clause is only available in ESQL, and is discouraged.

• RETAIN and TO are only available in DSQL.

ROLLBACK RETAIN

Available in: DSQL

Added in: 2.0

Description: Undoes all the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAIN [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it was through the API call isc_rollback_retaining().

ROLLBACK TO SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Undoes everything that happened in a transaction since the creation of the savepoint.

Syntax:

ROLLBACK [WORK] TO [SAVEPOINT] name

ROLLBACK TO SAVEPOINT performs the following operations:

• All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SET_CONTEXT() remain unchanged.

• All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

• All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested access to rows locked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

For a full discussion of savepoints, see SAVEPOINT.

68

Transaction control statements

SAVEPOINT

Tip

Find a more recent version at Firebird 5.0 Language Reference: SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

Syntax:

SAVEPOINT <name>

<name> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:

ROLLBACK [WORK] TO [SAVEPOINT] name

ROLLBACK TO SAVEPOINT performs the following operations:

• All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SET_CONTEXT() remain unchanged.

• All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

• All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested access to rows locked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especially if you update the same
records multiple times in one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

RELEASE SAVEPOINT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
are released as well.

Example DSQL session using a savepoint:

create table test (id integer);

69

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-savepoint

Transaction control statements

commit;
insert into test values (1);
commit;
insert into test values (2);
savepoint y;
delete from test;
select * from test; -- returns no rows
rollback to y;
select * from test; -- returns two rows
rollback;
select * from test; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, all changes performed in this transaction are backed out via a
transaction-level savepoint and the transaction is then committed. This logic reduces the amount of garbage
collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104–106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the
transaction if needed.

Tip

If you expect the volume of changes in your transaction to be large, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement, or – if you use the API – set the TPB flag isc_tpb_no_auto_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

• undo all actions in a BEGIN...END block where an exception occurs;

• undo all actions performed by the SP/trigger (or, in the case of a selectable SP, all actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepoints.

SET TRANSACTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: SET TRANSACTION

Available in: DSQL, ESQL

70

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-settransac

Transaction control statements

Changed in: 2.0

Description: Starts and optionally configures a transaction.

Syntax:

SET TRANSACTION
 [NAME hostvar]
 [READ WRITE | READ ONLY]
 [[ISOLATION LEVEL] { SNAPSHOT [TABLE STABILITY]
 | READ COMMITTED [[NO] RECORD_VERSION] }]
 [WAIT | NO WAIT]
 [LOCK TIMEOUT seconds]
 [NO AUTO UNDO]
 [IGNORE LIMBO]
 [RESERVING <tables> | USING <dbhandles>]

<tables> ::= <table_spec> [, <table_spec> ...]

<table_spec> ::= tablename [, tablename ...]
 [FOR [SHARED | PROTECTED] {READ | WRITE}]

<dbhandles> ::= dbhandle [, dbhandle ...]

• The NAME option is only available in ESQL. It must be followed by a previously declared and
initialized host-language variable. Without NAME, SET TRANSACTION applies to the default
transaction.

• The USING option is also ESQL-only. It limits the databases that the transaction can access to the
ones mentioned here.

• IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.

• LOCK TIMEOUT and NO WAIT are mutually exclusive.

• Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO

Available in: DSQL

Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfaces the isc_tpb_ignore_limbo TPB parameter, available in the API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT

Available in: DSQL

71

Transaction control statements

Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when a lock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its API equivalent is the new isc_tpb_lock_timeout TPB
parameter.

NO AUTO UNDO

Available in: DSQL, ESQL

Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changes in the event of a rollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NO AUTO UNDO is the SQL equivalent of the isc_tpb_no_auto_undo TPB parameter, available in the
API since InterBase times.

72

Chapter 8

PSQL statements

Tip

Find a more recent version at Firebird 5.0 Language Reference: Procedural SQL (PSQL) Statements

PSQL – Procedural SQL – is the Firebird programming language used in stored procedures, triggers and
executable blocks.

BEGIN ... END blocks may be empty

Tip

Find a more recent version at Firebird 5.0 Language Reference: BEGIN ... END

Available in: PSQL

Changed in: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position 0
as
begin
end

BREAK

Tip

Find a more recent version at Firebird 5.0 Language Reference: BREAK

Available in: PSQL

Added in: 1.0

Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

73

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-beginend
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-break

PSQL statements

Example:

create procedure selphrase(num int)
returns (phrase varchar(40))
as
begin
 for select Phr from Phrases into phrase do
 begin
 if (num < 1) then break;
 suspend;
 num = num - 1;
 end
 phrase = '*** Ready! ***';
 suspend;
end

This selectable SP returns at most num rows from the table Phrases. The variable num is decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at the line “phrase = '*** Ready! ***';”.

Important

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Tip

Find a more recent version at Firebird 5.0 Language Reference: CLOSE

Available in: PSQL

Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:

CLOSE cursorname;

Example: See DECLARE ... CURSOR.

DECLARE

Tip

Find a more recent version at Firebird 5.0 Language Reference: DECLARE VARIABLE

74

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-close
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-variable

PSQL statements

Available in: PSQL

DECLARE ... CURSOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: DECLARE .. CURSOR

Added in: 2.0

Description: Declares a named cursor and binds it to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and deletes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Syntax:

DECLARE [VARIABLE] cursorname CURSOR FOR (select-statement);

Example:

execute block
returns (relation char(31), sysflag int)
as
declare cur cursor for
 (select rdb$relation_name, rdb$system_flag from rdb$relations);
begin
 open cur;
 while (1=1) do
 begin
 fetch cur into relation, sysflag;
 if (row_count = 0) then leave;
 suspend;
 end
 close cur;
end

Notes:

• A “FOR UPDATE” clause is allowed in the SELECT statement, but not required for a positioned update or
delete to succeed.

• Make sure that declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

• If you need a cursor to loop through an output set, it is almost always easier – and less error-prone – to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check row_count after every fetch and break out of the loop
if it is zero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and allow you to operate several cursors in parallel.

• The SELECT statement may contain named SQL parameters, like in “select name || :sfx from
names where number = :num”. Each parameter must be a PSQL variable that has been declared
previously (this includes any in/out params of the PSQL module). When the cursor is opened, the parameter
is assigned the current value of the variable.

75

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-cursor

PSQL statements

• Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. As it is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changed in: 1.5

Description: In Firebird 1.5 and above, a PSQL local variable can be initialized upon declaration. The VARIABLE
keyword has become optional.

Syntax:

DECLARE [VARIABLE] varname datatype [{= | DEFAULT} value];

Example:

create procedure proccie (a int)
returns (b int)
as
 declare p int;
 declare q int = 8;
 declare r int default 9;
 declare variable s int;
 declare variable t int = 10;
 declare variable u int default 11;
begin
 <intelligent code here>
end

EXCEPTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXCEPTION

Available in: PSQL

Changed in: 1.5

Description: The EXCEPTION syntax has been extended so that the user can

a. Rethrow a caught exception or error.
b. Provide a custom message when throwing a user-defined exception.

76

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-handleexceptions.html#fblangref50-psql-exception

PSQL statements

Syntax:

EXCEPTION [<exception-name> [custom-message]]

<exception-name> ::= A previously defined exception name

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the
EXCEPTION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example:

when any do
begin
 insert into error_log (...) values (sqlcode, ...);
 exception;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up allow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:

exception ex_data_error 'You just lost some valuable data';

exception ex_bad_type 'Wrong type for record with id ' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Available in: DSQL, PSQL

Changed in: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

77

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

PSQL statements

EXECUTE STATEMENT

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXECUTE STATEMENT

Available in: PSQL

Added in: 1.5

Description: EXECUTE STATEMENT takes a single string argument and executes it as if it had been submitted as
a DSQL statement. The exact syntax depends on the number of data rows that the supplied statement may return.

No data returned

This form is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.

Syntax:

EXECUTE STATEMENT <statement>

<statement> ::= An SQL statement returning no data.

Example:

create procedure DynamicSampleOne (ProcName varchar(100))
as
declare variable stmt varchar(1024);
declare variable param int;
begin
 select min(SomeField) from SomeTable into param;
 stmt = 'execute procedure '
 || ProcName
 || '('
 || cast(param as varchar(20))
 || ')';
 execute statement stmt;
end

Warning

Although this form of EXECUTE STATEMENT can also be used with all kinds of DDL strings (except CREATE/
DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL rule
in PSQL.

One row of data returned

This form is used with singleton SELECT statements.

78

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-execstmt

PSQL statements

Syntax:

EXECUTE STATEMENT <select-statement> INTO <var> [, <var> ...]

<select-statement> ::= An SQL statement returning at most one row of data.
<var> ::= A PSQL variable, optionally preceded by “:”

Example:

create procedure DynamicSampleTwo (TableName varchar(100))
as
declare variable param int;
begin
 execute statement
 'select max(CheckField) from ' || TableName into :param;
 if (param > 100) then
 exception Ex_Overflow 'Overflow in ' || TableName;
end

Any number of data rows returned

This form – analogous to “FOR SELECT ... DO” – is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <select-statement> INTO <var> [, <var> ...]
 DO <compound-statement>

<select-statement> ::= Any SELECT statement.
<var> ::= A PSQL variable, optionally preceded by “:”

Example:

create procedure DynamicSampleThree
 (TextField varchar(100),
 TableName varchar(100))
returns
 (LongLine varchar(32000))
as
declare variable Chunk varchar(100);
begin
 Chunk = '';
 for execute statement
 'select ' || TextField || ' from ' || TableName into :Chunk
 do
 if (Chunk is not null) then
 LongLine = LongLine || Chunk || ' ';
 suspend;
end

Caveats with EXECUTE STATEMENT

1. There is no way to validate the syntax of the enclosed statement.

79

PSQL statements

2. There are no dependency checks to discover whether tables or columns have been dropped.

3. Operations will be slow because the embedded statement has to be prepared every time it is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Return values are strictly checked for data type in order to avoid unpredictable type-casting exceptions. For
example, the string '1234' would convert to an integer, 1234, but 'abc' would give a conversion error.

6. The submitted DSQL statement is always executed with the privileges of the current user. Privileges
granted to the trigger or SP that contains the EXECUTE STATEMENT statement are not in effect while the
DSQL statement runs.

All in all, this feature is intended only for very cautious use and you should always take the above factors into
account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXIT

Available in: PSQL

Changed in: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Tip

Find a more recent version at Firebird 5.0 Language Reference: FETCH

Available in: PSQL

Added in: 2.0

Description: Fetches the next data row from a cursor's result set and stores the column values in PSQL variables.

Syntax:

FETCH cursorname INTO [:]varname [, [:]varname ...];

Notes:

80

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-exit
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-fetch

PSQL statements

• The ROW_COUNT context variable will be 1 if the fetch returned a data row and 0 if the end of the set has
been reached.

• You can do a positioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Tip

Find a more recent version at Firebird 5.0 Language Reference: FOR EXECUTE STATEMENT

Available in: PSQL

Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Tip

Find a more recent version at Firebird 5.0 Language Reference: FOR SELECT

Available in: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <select-stmt>
 INTO <var> [, <var> ...]
 [AS CURSOR name]
DO
 <psql-stmt>

<select-stmt> ::= A valid SELECT statement.
<var> ::= A PSQL variable name, optionally preceded by “:”
<psql-stmt> ::= A single statement or a block of PSQL code.

• The SELECT statement may contain named SQL parameters, like in “select name || :sfx
from names where number = :num”. Each parameter must be a PSQL variable that has
been declared previously (this includes any in/out params of the PSQL module).

• Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code

81

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forexec
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forselect

PSQL statements

thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. As it is currently
not strictly defined, it may change in some future version of Firebird.

Examples:

create procedure shownums
 returns (aa int, bb int, sm int, df int)
as
begin
 for select distinct a, b from numbers order by a, b
 into :aa, :bb
 do
 begin
 sm = aa + bb;
 df = aa - bb;
 suspend;
 end
end

create procedure relfields
 returns (relation char(32), pos int, field char(32))
as
begin
 for select rdb$relation_name from rdb$relations
 into :relation
 do
 begin
 for select rdb$field_position + 1, rdb$field_name
 from rdb$relation_fields
 where rdb$relation_name = :relation
 order by rdb$field_position
 into :pos, :field
 do
 begin
 if (pos = 2) then relation = ' "'; -- for nicer output
 suspend;
 end
 end
end

AS CURSOR clause

Available in: PSQL

Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. This feature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodelete varchar(24))
 returns (town varchar(24), pop int)
as

82

PSQL statements

begin
 for select town, pop from towns into :town, :pop as cursor tcur do
 begin
 if (town = towntodelete)
 then delete from towns where current of tcur;
 else suspend;
 end
end

Notes:

• A “FOR UPDATE” clause is allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

• Make sure that cursor names defined here do not clash with any names created earlier on in DECLARE
CURSOR statements.

• AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Tip

Find a more recent version at Firebird 5.0 Language Reference: LEAVE

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional label
argument introduced in Firebird 2.0, LEAVE can break out of surrounding loops as well. Execution continues
with the first statement after the outermost terminated loop.

Syntax:

[label:]
{FOR | WHILE} ... DO
 ...
 (possibly nested loops, with or without labels)
 ...
 LEAVE [label];

Example:

If an error occurs during the insert in the example below, the event is logged and the loop terminated.
The program continues at the line of code reading “c = 0;”

while (b < 10) do
begin
 insert into Numbers(B) values (:b);

83

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-leave

PSQL statements

 b = b + 1;
 when any do
 begin
 execute procedure log_error (current_timestamp, 'Error in B loop');
 leave;
 end
end
c = 0;

The next example uses labels. “Leave LoopA” terminates the outer loop, “leave LoopB” the
inner loop. Notice that a plain “leave” would also suffice to terminate the inner loop.

stmt1 = 'select Name from Farms';
LoopA:
for execute statement :stmt1 into :farm do
begin
 stmt2 = 'select Name from Animals where Farm = ''';
 LoopB:
 for execute statement :stmt2 || :farm || '''' into :animal do
 begin
 if (animal = 'Fluffy') then leave LoopB;
 else if (animal = farm) then leave LoopA;
 else suspend;
 end
end

OPEN cursor

Tip

Find a more recent version at Firebird 5.0 Language Reference: OPEN

Available in: PSQL

Added in: 2.0

Description: Opens a previously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cursorname;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code
Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

84

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-open

PSQL statements

UDFs callable as void functions
Changed in: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFs without assigning the result value, i.e. like a
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF is to produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to a dummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually a kind of auto-declared UDFs. You may therefore call them without catching the result. Of course this
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF invalid for view cursors
Changed in: 2.0

Description: In versions 2.0.x, positioned updates and deletes using WHERE CURRENT OF are no longer possible
for view cursors, due to some problems that could make such cursors unreliable. This restriction will be lifted
again in Firebird 2.1, which has an improved validation logic for views.

85

Chapter 9

Context variables

Tip

Find a more recent version at Firebird 5.0 Language Reference: Context Variables

CURRENT_CONNECTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_CONNECTION

Available in: DSQL, PSQL

Added in: 1.5

Description: CURRENT_CONNECTION returns a unique identifier for the current connection.

Type: INTEGER

Examples:

select current_connection from rdb$database

execute procedure P_Login(current_connection)

The value of CURRENT_CONNECTION is stored on the database header page and reset upon restore. Since the
engine itself is not interested in this value, it is only incremented if the client reads it during a session. Hence it
is only useful as a unique identifier, not as an indicator of the number of connections since the creation or latest
restoration of the database. Please note that this will change in Firebird 2.1.

CURRENT_ROLE

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_ROLE

Available in: DSQL, PSQL

Added in: 1.0

Description: CURRENT_ROLE is a context variable containing the role of the currently connected user. If there
is no active role, CURRENT_ROLE is NONE.

86

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html#fblangref50-contextvars-current-connection
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-role.html

Context variables

Type: VARCHAR(31)

Example:

if (current_role <> 'MANAGER')
 then exception only_managers_may_delete;
else
 delete from Customers where custno = :custno;

CURRENT_ROLE always represents a valid role or NONE. If a user connects with a non-existing role, the engine
silently resets it to NONE without returning an error.

CURRENT_TIME

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_TIME

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: CURRENT_TIME returns the current server time. In versions prior to 2.0, the fractional part used
to be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
a precision when polling this variable. The default is still 0 decimals, i.e. seconds precision.

Type: TIME

Syntax:

CURRENT_TIME [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples:

select current_time from rdb$database
-- returns e.g. 14:20:19.6170

select current_time(2) from rdb$database
-- returns e.g. 14:20:23.1200

Notes:

• Unlike CURRENT_TIME, the default precision of CURRENT_TIMESTAMP has changed to 3 decimals. As a
result, CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless
you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
time intervals), use 'NOW'.

87

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-time.html

Context variables

CURRENT_TIMESTAMP

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_TIMESTAMP

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: CURRENT_TIMESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part used to be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP

Syntax:

CURRENT_TIMESTAMP [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples:

select current_timestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

select current_timestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

• The default precision of CURRENT_TIME is still 0 decimals, so in Firebird 2.0 and up
CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless you
explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIMESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use 'NOW'.

CURRENT_TRANSACTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_TRANSACTION

Available in: DSQL, PSQL

88

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-timestamp.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-transaction.html

Context variables

Added in: 1.5

Description: CURRENT_TRANSACTION contains the unique identifier of the current transaction.

Type: INTEGER

Examples:

select current_transaction from rdb$database

New.Txn_ID = current_transaction;

The value of CURRENT_TRANSACTION is stored on the database header page and reset upon restore. Unlike
CURRENT_CONNECTION, it is incremented with every new transaction, whether the client reads the value or not.

CURRENT_USER

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT_USER

Available in: DSQL, PSQL

Added in: 1.0

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:

create trigger bi_customers for customers before insert as
begin
 New.added_by = CURRENT_USER;
 New.purchases = 0;
end

DELETING

Tip

Find a more recent version at Firebird 5.0 Language Reference: DELETING

Available in: PSQL

Added in: 1.5

Description: Available in triggers only, DELETING indicates if the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

89

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-user.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-deleting.html

Context variables

Type: boolean

Example:

if (deleting) then
begin
 insert into Removed_Cars (id, make, model, removed)
 values (old.id, old.make, old.model, current_timestamp);
end

GDSCODE

Tip

Find a more recent version at Firebird 5.0 Language Reference: GDSCODE

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Description: In a “WHEN ... DO” error handling block, the GDSCODE context variable contains the numerical
representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error
handlers, GDSCODE is always 0. Outside PSQL it doesn't exist at all.

Type: INTEGER

Example:

when gdscode grant_obj_notfound, gdscode grant_fld_notfound,
 gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begin
 execute procedure log_grant_error(gdscode);
 exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the
GDSCODE context variable is an INTEGER. If you want to compare it against a certain error, you have to use the
numeric value, e.g. 335544551 for grant_obj_notfound.

INSERTING

Tip

Find a more recent version at Firebird 5.0 Language Reference: INSERTING

Available in: PSQL

90

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-gdscode.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-inserting.html

Context variables

Added in: 1.5

Description: Available in triggers only, INSERTING indicates if the trigger fired because of an INSERT
operation. Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

NEW

Tip

Find a more recent version at Firebird 5.0 Language Reference: NEW

Available in: PSQL, triggers only

Changed in: 1.5, 2.0

Description: NEW contains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it is read-only in AFTER triggers.

Type: Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – NEW is always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEW will always return
NULL; writing to it will cause a runtime exception.

'NOW'

Tip

Find a more recent version at Firebird 5.0 Language Reference: 'NOW'

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: 'NOW' is not a variable but a string literal. It is, however, special in the sense that when you CAST()
it to a date/time type, you will get the current date and/or time. The fractional part of the time used to be always
“.0000”, giving an effective seconds precision. In Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
'NOW' is case-insensitive, and the engine ignores leading or trailing spaces when casting.

91

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-new.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-now.html

Context variables

Type: CHAR(3)

Examples:

select 'Now' from rdb$database
-- returns 'Now'

select cast('Now' as date) from rdb$database
-- returns e.g. 2008-08-13

select cast('now' as time) from rdb$database
-- returns e.g. 14:20:19.6170

select cast('NOW' as timestamp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

select date 'Now' from rdb$database
select time 'now' from rdb$database
select timestamp 'NOW' from rdb$database

Notes:

• 'NOW' always returns the actual date/time, even in PSQL modules, where CURRENT_DATE,
CURRENT_TIME and CURRENT_TIMESTAMP return the same value throughout the duration of the
outermost routine. This makes 'NOW' useful for measuring time intervals in triggers, procedures and
executable blocks.

• Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TIME and
CURRENT_TIMESTAMP is generally preferable to casting 'NOW'. Be aware though that CURRENT_TIME
defaults to seconds precision; to get milliseconds precision, use CURRENT_TIME(3).

OLD

Tip

Find a more recent version at Firebird 5.0 Language Reference: OLD

Available in: PSQL, triggers only

Changed in: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

Type: Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
always return NULL; writing to it will cause a runtime exception.

92

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-old.html

Context variables

ROW_COUNT

Tip

Find a more recent version at Firebird 5.0 Language Reference: ROW_COUNT

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or executable
block.

Type: INTEGER

Example:

update Figures set Number = 0 where id = :id;
if (row_count = 0) then
 insert into Figures (id, Number) values (:id, 0);

Behaviour with SELECT and FETCH:

• After a singleton SELECT, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.

• In a FOR SELECT loop, ROW_COUNT is incremented with every iteration (starting at 0 before the first).

• After a FETCH from a cursor, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

• In Firebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE

Tip

Find a more recent version at Firebird 5.0 Language Reference: SQLCODE

Available in: PSQL

Added in: 1.5

93

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-row-count.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-sqlcode.html

Context variables

Changed in: 2.0

Description: In a “WHEN ... DO” error handling block, the SQLCODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER

Example:

when any
do
begin
 if (sqlcode <> 0) then
 Msg = 'An SQL error occurred!';
 else
 Msg = 'Something bad happened!';
 exception ex_custom Msg;
end

UPDATING

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPDATING

Available in: PSQL

Added in: 1.5

Description: Available in triggers only, UPDATING indicates if the trigger fired because of an UPDATE
operation. Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

94

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-updating.html

Chapter 10

Operators and predicates

Tip

Find a more recent version at Firebird 5.0 Language Reference: Common Language Elements

NULL literals allowed as operands

Changed in: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like “A <> NULL”, “B + NULL” or “NULL < ANY(...)” would be rejected by the parser.
Now they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of a field or variable by testing with “= NULL” or “<>
NULL”. Always use “IS [NOT] NULL”.

Predicates: The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (string concatenator)

Tip

Find a more recent version at Firebird 5.0 Language Reference: Concatenation Operator

Available in: DSQL, ESQL, PSQL

Result type VARCHAR

Changed in: 2.0

Description: The result type of string concatenations used to be CHAR(n). Starting with Firebird 2.0, it is
VARCHAR(n). As a result, the maximum length of a concatenation outcome is now 32765 instead of 32767.

95

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html
https://www.firebirdsql.org/manual/nullguide-predicates.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-concat

Operators and predicates

Overflow checking

Changed in: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Tip

Find a more recent version at Firebird 5.0 Language Reference: ALL

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The ALL predicate now allows a NULL as the test value. Notice that this brings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set is filled with NULLs and the operator chosen is “=”, the predicate will not return true, but NULL.

UNION as subselect

Changed in: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Tip

Find a more recent version at Firebird 5.0 Language Reference: ANY and SOME

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, a NULL test value will not be considered equal to a NULL in the subquery result
set.

96

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-all
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-anysome

Operators and predicates

UNION as subselect

Changed in: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Tip

Find a more recent version at Firebird 5.0 Language Reference: IN

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)” will not return true and “NULL NOT

IN (..., NULL, ..., ...)” will not return false.

UNION as subselect

Changed in: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Tip

Find a more recent version at Firebird 5.0 Language Reference: IS [NOT] DISTINCT FROM

Available in: DSQL, PSQL

Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean

Syntax:

op1 IS [NOT] DISTINCT FROM op2

97

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-in
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-isnotdistinct

Operators and predicates

Examples:

select id, name, teacher from courses
 where start_day is not distinct from end_day

if (New.Job is distinct from Old.Job)
 then post_event 'job_changed';

IS [NOT] DISTINCT FROM always returns true or false, never NULL (unknown). The “=” and “<>” operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 10.1. Comparison of [NOT] DISTINCT to “=” and “<>”

Results with the different operatorsOperand
characteristics

= NOT DISTINCT <> DISTINCT

Same value true true false false

Different values false false true true

Both NULL NULL true NULL false

One NULL NULL false NULL true

NEXT VALUE FOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: NEXT VALUE FOR

Available in: DSQL, PSQL

Added in: 2.0

Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.

Syntax:

NEXT VALUE FOR sequence-name

Example:

new.cust_id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

98

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-nxtvlufor

Operators and predicates

SOME

See ANY

99

Chapter 11

Internal functions

Tip

Find a more recent version at Firebird 5.0 Language Reference: Built-in Scalar Functions

BIT_LENGTH()

Tip

Find a more recent version at Firebird 5.0 Language Reference: BIT_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Result type: INTEGER

Syntax:

BIT_LENGTH (str)

Examples:

select bit_length('Hello!') from rdb$database
 -- returns 48

select bit_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 64: ü and ß take up one byte each in ISO8859_1

select bit_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 80: ü and ß take up two bytes each in UTF8

select bit_length

100

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-bit-length

Internal functions

 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 208: all 24 CHAR positions count, and two of them are 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

CAST()

Tip

Find a more recent version at Firebird 5.0 Language Reference: CAST()

Available in: DSQL, ESQL, PSQL

Changed in: 2.0

Description: CAST converts an expression to the desired datatype. If the conversion is not possible, an error
is thrown.

Result type: User-chosen.

Syntax:

CAST (expression AS datatype)

Shorthand syntax:

Alternative syntax, supported only when casting a string literal to a DATE, TIME or TIMESTAMP:

datatype 'date/timestring'

This syntax was already available in InterBase, but was never properly documented.

Examples:

A full-syntax cast:

select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will
understand from the context (comparison to a DATE field) how to interpret the string:

update People set AgeCat = 'Old'
 where BirthDate < '1-Jan-1943'

But this is not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

select date 'today' - 7 from rdb$database

101

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-casting.html#fblangref50-scalarfuncs-cast

Internal functions

The following table shows the type conversions possible with CAST.

Table 11.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR

[VAR]CHAR [VAR]CHAR
Numeric types
DATE
TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
TIMESTAMP

TIMESTAMP [VAR]CHAR
DATE
TIME

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP to a DATE. Also, the
fact that types are CAST-compatible is in itself no guarantee that a conversion will succeed. “CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)”.

New in Firebird 2.0: You can now cast statement parameters to a datatype, as in:

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast – shorthand casts are not supported.

CHAR_LENGTH(), CHARACTER_LENGTH()

Tip

Find a more recent version at Firebird 5.0 Language Reference: CHAR_LENGTH(),
CHARACTER_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Description: Gives the length in characters of the input string.

Note

With arguments of type CHAR, this function returns the formal string length (i.e. the declared length of a field or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

102

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length

Internal functions

Syntax:

CHAR_LENGTH (str)
CHARACTER_LENGTH (str)

Examples:

select char_length('Hello!') from rdb$database
 -- returns 6

select char_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8

select char_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 8; the fact that ü and ß take up two bytes each is irrelevant

select char_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

COALESCE()

Tip

Find a more recent version at Firebird 5.0 Language Reference: COALESCE()

Available in: DSQL, PSQL

Added in: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:

COALESCE (<exp1>, <exp2> [, <expN> ...])

Example:

select
 coalesce (Nickname, FirstName, 'Mr./Mrs.') || ' ' || LastName
 as FullName
from Persons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that too is NULL, “Mr./Mrs.” is used. Finally, it adds the family name. All in all, it tries to use the available data
to compose a full name that is as informal as possible. Notice that this scheme only works if absent nicknames

103

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-coalesce

Internal functions

and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

EXTRACT()

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTRACT()

Available in: DSQL, ESQL, PSQL

Added in: IB 6

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. It was already
added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or DECIMAL(6,4)

Syntax:

EXTRACT (<part> FROM <datetime>)

<part> ::= YEAR | MONTH | DAY | WEEKDAY | YEARDAY
 | HOUR | MINUTE | SECOND
<datetime> ::= An expression of type DATE, TIME or TIMESTAMP

The returned datatype is DECIMAL(6,4) for the SECOND part and SMALLINT for all others. The ranges are shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from a TIME), an error occurs.

Table 11.2. Ranges for EXTRACT results

Part Range Comment

YEAR 1–9999

MONTH 1–12

DAY 1–31

WEEKDAY 0–6 0 = Sunday

YEARDAY 0–365 0 = January 1

HOUR 0–23

MINUTE 0–59

SECOND 0.0000–59.999

104

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-extract

Internal functions

GEN_ID()

Tip

Find a more recent version at Firebird 5.0 Language Reference: GEN_ID()

Available in: DSQL, ESQL, PSQL

Description: Increments a generator or sequence and returns its new value. From Firebird 2.0 onward, the SQL-
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

GEN_ID (generator-name, <step>)

<step> ::= An integer expression.

Example:

new.rec_id = gen_id(gen_recnum, 1);

Warning

Unless you know very well what you are doing, using GEN_ID() with step values lower than 1 may compromise
your data's integrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

IIF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: IIF()

Available in: DSQL, PSQL

Added in: 2.0

Description: IIF takes three arguments. If the first evaluates to true, the second argument is returned; otherwise
the third is returned.

Result type: Depends on input.

Syntax:

IIF (<condition>, ResultT, ResultF)

105

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-generators.html#fblangref50-scalarfuncs-gen-id
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-iif

Internal functions

<condition> ::= A boolean expression.

Example:

select iif(sex = 'M', 'Sir', 'Madam') from Customers

IIF(Cond, Result1, Result2) is a shortcut for “CASE WHEN Cond THEN Result1 ELSE Result2 END”.
You can also compare IIF to the ternary “? :” operator in C-like languages.

LOWER()

Tip

Find a more recent version at Firebird 5.0 Language Reference: LOWER()

Available in: DSQL, ESQL, PSQL

Added in: 2.0

Description: Returns the lower-case equivalent of the input string. This function also correctly lowercases non-
ASCII characters, even if the default (binary) collation is used. The character set must be appropriate though:
with ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged.

Result type: (VAR)CHAR

Syntax:

LOWER (str)

Note

Because LOWER is a reserved word, the internal function wil take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, as in "LOWER"(str).

Example:

select Sheriff from Towns
 where lower(Name) = 'cooper''s valley'

See also: UPPER

NULLIF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: NULLIF()

Available in: DSQL, PSQL

106

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-lower
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-nullif

Internal functions

Added in: 1.5

Description: NULLIF returns the value of the first argument, unless it is equal to the second. In that case, NULL
is returned.

Result type: Depends on input.

Syntax:

NULLIF (<exp1>, <exp2>)

Example:

select avg(nullif(Weight, -1)) from FatPeople

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nullif external
functions.

OCTET_LENGTH()

Tip

Find a more recent version at Firebird 5.0 Language Reference: OCTET_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER

Syntax:

OCTET_LENGTH (str)

Examples:

select octet_length('Hello!') from rdb$database

107

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-octet-length

Internal functions

 -- returns 6

select octet_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8: ü and ß take up one byte each in ISO8859_1

select octet_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 10: ü and ß take up two bytes each in UTF8

select octet_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH

RDB$GET_CONTEXT()

Tip

Find a more recent version at Firebird 5.0 Language Reference: RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present – the user doesn't have to do anything to make them
available.

Available in: DSQL, ESQL, PSQL

Added in: 2.0

Description: Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)

Syntax:

RDB$GET_CONTEXT ('<namespace>', '<varname>')

<namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive string of max. 80 characters

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can
create and set variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
SYSTEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 11.3. Context variables in the SYSTEM namespace

DB_NAME Either the full path to the database or – if connecting via the path is disallowed
– its alias.

108

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-get-context

Internal functions

NETWORK_PROTOCOL The protocol used for the connection. Can be 'TCPv4', 'WNET', 'XNET' or
NULL.

CLIENT_ADDRESS For TCPv4, this is the IP address. For XNET, the local process ID. For all other
protocols this variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.

CURRENT_ROLE Same as global CURRENT_ROLE variable.

SESSION_ID Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL The isolation level of the current transaction; can be 'READ COMMITTED',
'SNAPSHOT' or 'CONSISTENCY'.

Return values and error behaviour: If the polled variable exists in the given namespace, its value will be returned
as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SYSTEM namespace, an error is raised. If you poll a non-existing variable in one of the other namespaces,
NULL is returned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.

Examples:

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

insert into MyTable (TestField)
 values (rdb$get_context('USER_SESSION', 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Tip

Find a more recent version at Firebird 5.0 Language Reference: RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present – the user doesn't have to do anything to make them
available.

Available in: DSQL, ESQL, PSQL

Added in: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

109

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-set-context

Internal functions

Result type: INTEGER

Syntax:

RDB$SET_CONTEXT ('<namespace>', '<varname>', <value> | NULL)

<namespace> ::= USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive string of max. 80 characters
<value> ::= A value of any type, as long as it's castable
 to a VARCHAR(255)

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can
create and set variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variables in USER_TRANSACTION only exist in the
transaction in which they have been set. When the transaction ends, the context and all the variables defined
in it are destroyed.

Return values and error behaviour: The function returns 1 if the variable already existed before the call and 0
if it didn't. To remove a variable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
 from rdb$database

Notes:

• The maximum number of variables in any single context is 1000.

• All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO SAVEPOINT
unaltered, no matter at which point during the transaction they were set.

• Due to its UDF-like nature, RDB$SET_CONTEXT can – in PSQL only – be called like a void function, without
assigning the result, as in the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

SUBSTRING()

Tip

Find a more recent version at Firebird 5.0 Language Reference: SUBSTRING()

Available in: DSQL, PSQL

Added in: 1.0

Changed in: 2.0

110

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-substring

Internal functions

Description: Returns a substring starting at the given position, either to the end of the string or with a given
length.

Result type: (VAR)CHAR(n)

Syntax:

SUBSTRING (str FROM pos [FOR len])

str ::= a string expression
pos ::= an integer expression
len ::= an integer expression

This function returns the substring starting at character position pos (the first position being 1). Without the
optional FOR argument, it returns all the remaining characters in the string. With it, it returns len characters
or the remainder of the string, whichever is shorter.

Since Firebird 2.0, SUBSTRING fully supports multi-byte character sets.

In Firebird 1.x, pos and len had to be be integer literals. In 2.0 and above they can be any valid integer
expression.

The result type is VARCHAR for a VARCHAR or BLOB argument, and CHAR for a CHAR or literal argument.

The width – in characters – of the result field is always equal to the length of str, regardless of pos and len.
So, substring('pinhead' from 4 for 2) will return a CHAR(7) containing the string 'he'.

SUBSTRING can be used with:

• Any string, (var)char or text BLOB argument, regardless of its character set;
• Subtype 0 (binary) BLOBs.

Example:

insert into AbbrNames(AbbrName)
 select substring(LongName from 1 for 3) from LongNames

Effect of NULLs

• If str is NULL, the function returns NULL.

• If str is a valid string but pos and/or len is NULL, the function returns NULL but describes the result field
as non-nullable. As a result, most clients (including isql) will incorrectly show the result as an empty string.

TRIM()

Tip

Find a more recent version at Firebird 5.0 Language Reference: TRIM()

Available in: DSQL, PSQL

Added in: 2.0

111

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-trim

Internal functions

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. The
result is a VARCHAR(n) with n the formal length of the input string.

Result type: VARCHAR(n)

Syntax:

TRIM ([<adjust>] str)

<adjust> ::= {[where] [what]} FROM

where ::= BOTH | LEADING | TRAILING /* default is BOTH */

what ::= The substring to be removed (repeatedly if necessary)
 from str's head and/or tail. Default is ' ' (space).

Examples:

select trim (' Waste no space ') from rdb$database
 -- returns 'Waste no space'

select trim (leading from ' Waste no space ') from rdb$database
 -- returns 'Waste no space '

select trim (leading '.' from ' Waste no space ') from rdb$database
 -- returns ' Waste no space '

select trim (trailing '!' from 'Help!!!!') from rdb$database
 -- returns 'Help'

select trim ('la' from 'lalala I love you Ella') from rdb$database
 -- returns ' I love you El'

select trim ('la' from 'Lalala I love you Ella') from rdb$database
 -- returns 'Lalala I love you El'

UPPER()

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPPER()

Available in: DSQL, ESQL, PSQL

Changed in: 2.0

Description: Returns the upper-case equivalent of the input string. Since Firebird 2 this function also correctly
uppercases non-ASCII characters, even if the default (binary) collation is used. The character set must be
appropriate though: with ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the
entire string is returned unchanged.

Result type: (VAR)CHAR

112

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-upper

Internal functions

Syntax:

UPPER (str)

Examples:

select upper(_iso8859_1 'Débâcle')
from rdb$database
 -- returns 'DÉBÂCLE' (before Firebird 2.0: 'DéBâCLE')

select upper(_iso8859_1 'Débâcle' collate fr_fr)
from rdb$database
 -- returns 'DEBACLE', following French uppercasing rules

See also: LOWER

113

Chapter 12

External functions (UDFs)
External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

• ib_udf – inherited from InterBase;

• fbudf – a new library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can also create their own UDF libraries or acquire them from third parties.

addDay

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number days added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addday (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addDay
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addDay' MODULE_NAME 'fbudf'

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number hours added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addhour (atimestamp, number)

114

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTION addHour
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addHour' MODULE_NAME 'fbudf'

addMilliSecond

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number milliseconds added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addmillisecond (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMilliSecond
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMilliSecond' MODULE_NAME 'fbudf'

addMinute

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number minutes added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addminute (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMinute
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMinute' MODULE_NAME 'fbudf'

addMonth

Library: fbudf

115

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number months added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addmonth (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMonth
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMonth' MODULE_NAME 'fbudf'

addSecond

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number seconds added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addsecond (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addSecond
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addSecond' MODULE_NAME 'fbudf'

addWeek

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number weeks added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addweek (atimestamp, number)

116

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTION addWeek
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addWeek' MODULE_NAME 'fbudf'

addYear

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with number years added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addyear (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addYear
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addYear' MODULE_NAME 'fbudf'

ascii_char

Library: ib_udf

Changed in: 1.0, 2.0

Description: Returns the ASCII character corresponding to the integer value passed in.

Result type: VARCHAR(1)

Syntax (unchanged):

ascii_char (intval)

Declaration:

DECLARE EXTERNAL FUNCTION ascii_char
 INTEGER NULL
 RETURNS CSTRING(1) FREE_IT
 ENTRY_POINT 'IB_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

117

External functions (UDFs)

The NULL after INTEGER is an optional addition that became available in Firebird 2. When declared
with the NULL keyword, the engine will pass a NULL argument unchanged to the function. This causes
a NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• ascii_char(0) returns an empty string in all versions, not a character with ASCII value 0.

• Before Firebird 2.0, the result type was CHAR(1).

dow

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the day of the week from a timestamp argument. The returned name may be localized.

Result type: VARCHAR(15)

Syntax:

dow (atimestamp)

Declaration:

DECLARE EXTERNAL FUNCTION dow
 TIMESTAMP,
 VARCHAR(15) RETURNS PARAMETER 2
 ENTRY_POINT 'DOW' MODULE_NAME 'fbudf'

See also: sdow

dpower

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns x to the y'th power.

Result type: DOUBLE PRECISION

Syntax:

dpower (x, y)

118

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTION dPower
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR,
 DOUBLE PRECISION BY DESCRIPTOR
 RETURNS PARAMETER 3
 ENTRY_POINT 'power' MODULE_NAME 'fbudf'

getExactTimestamp

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: CURRENT_TIMESTAMP or 'NOW'

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TIMESTAMP always had .0000 in the fractional part of the second. In Firebird 2.0 and
up it is better to use CURRENT_TIMESTAMP, which now also defaults to milliseconds precision. To measure
time intervals in PSQL modules, use 'NOW'.

Result type: TIMESTAMP

Syntax:

getexacttimestamp()

Declaration:

DECLARE EXTERNAL FUNCTION getExactTimestamp
 TIMESTAMP RETURNS PARAMETER 1
 ENTRY_POINT 'getExactTimestamp' MODULE_NAME 'fbudf'

i64round

See round.

i64truncate

See truncate.

log

Library: ib_udf

Changed in: 1.5

119

External functions (UDFs)

Description: In Firebird 1.5 and up, log(x,y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Result type: DOUBLE PRECISION

Syntax (unchanged):

log (x, y)

Declaration (unchanged):

DECLARE EXTERNAL FUNCTION log
 DOUBLE PRECISION, DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_log' MODULE_NAME 'ib_udf'

Warning

If any of your pre-1.5 databases use log, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
the wrong results.

lower

Library: ib_udf

Changed in: 2.0

Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the new, superior internal function LOWER instead.

Result type: VARCHAR(n)

Syntax:

"LOWER" (str)

Declaration:

DECLARE EXTERNAL FUNCTION "LOWER"
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lower' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. "LOWER" has been surrounded by double-
quotes because LOWER, being a reserved word, cannot be used as an identifier except when quoted.
When you call the function, you also have to add the quotes and use the exact capitalization, otherwise
the internal function will take precedence. (Most other internal function names are not reserved words;
in those cases, the external function prevails if it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.

120

External functions (UDFs)

This leads to a NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

lpad

Library: ib_udf

Added in: 1.5

Changed in: 1.5.2, 2.0

Description: Returns the input string left-padded with padchars until endlength is reached.

Result type: VARCHAR(n)

Syntax:

lpad (str, endlength, padchar)

Declaration:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(255) NULL, INTEGER, CSTRING(1) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULLs after the CSTRING arguments
are an optional addition that became available in Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result is a string with endlengh padchars
(if str is NULL) or a copy of str itself (if padchar is NULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• When calling this function, make sure endlength does not exceed the declared result length.

121

External functions (UDFs)

• If endlength is less than str's length, str is truncated to endlength. If endlength is negative, the
result is NULL.

• A NULL endlength is treated as if it were 0.

• If padchar is empty, or if padchar is NULL and the function has been declared without the NULL keyword
after the last argument, str is returned unchanged (or truncated to endlength).

• Before Firebird 2.0, the result type was CHAR(n).

• A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

ltrim

Library: ib_udf

Changed in: 1.5, 1.5.2, 2.0

Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to use the internal function TRIM instead, as it is both more powerful and more versatile.

Result type: VARCHAR(n)

Syntax (unchanged):

ltrim (str)

Declaration:

DECLARE EXTERNAL FUNCTION ltrim
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_ltrim' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

122

External functions (UDFs)

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In Firebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

*nullif

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function NULLIF()

Description: The four *nullif functions – for integers, bigints, doubles and strings, respectively – each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.

Syntax:

inullif (int1, int2)
i64nullif (bigint1, bigint2)
dnullif (double1, double2)
snullif (string1, string2)

As from Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

• These functions return NULL when the second argument is NULL, even if the first argument is a proper value.
This is a wrong result. The NULLIF internal function doesn't have this bug.

• i64nullif and dnullif will return wrong and/or bizarre results if it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION inullif
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS INT BY DESCRIPTOR
 ENTRY_POINT 'iNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64nullif
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS NUMERIC(18,4) BY DESCRIPTOR
 ENTRY_POINT 'iNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION dnullif
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR
 RETURNS DOUBLE PRECISION BY DESCRIPTOR
 ENTRY_POINT 'dNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION snullif
 VARCHAR(100) BY DESCRIPTOR, VARCHAR(100) BY DESCRIPTOR,

123

External functions (UDFs)

 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'sNullIf' MODULE_NAME 'fbudf'

*nvl

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function COALESCE()

Description: The four nvl functions – for integers, bigints, doubles and strings, respectively – are NULL
replacers. They each return the first argument's value if it is not NULL. If the first argument is NULL, the value
of the second argument is returned.

Result type: Varies, see declarations.

Syntax:

invl (int1, int2)
i64nvl (bigint1, bigint2)
dnvl (double1, double2)
snvl (string1, string2)

As from Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i64nvl and dnvl will return wrong and/or bizarre results if it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION invl
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS INT BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64nvl
 NUMERIC(18,0) BY DESCRIPTOR, NUMERIC(18,0) BY DESCRIPTOR
 RETURNS NUMERIC(18,0) BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION dnvl
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR
 RETURNS DOUBLE PRECISION BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION snvl
 VARCHAR(100) BY DESCRIPTOR, VARCHAR(100) BY DESCRIPTOR,
 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'sNvl' MODULE_NAME 'fbudf'

124

External functions (UDFs)

rand

Library: ib_udf

Changed in: 2.0

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multiple rand() calls within the same second would
therefore return the same value. If you want that old behaviour in Firebird 2 and up, use the new function
srand().

Result type: DOUBLE PRECISION

Syntax:

rand ()

Declaration:

DECLARE EXTERNAL FUNCTION rand
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_rand' MODULE_NAME 'ib_udf'

right

See sright.

round, i64round
Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changed in: 1.5, 2.0.6

Description: These functions return the whole number that is nearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (number)
i64round (bignumber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3.5 is rounded to 4, but -3.5 is rounded to -3.

125

External functions (UDFs)

Bug alert

In versions 2.0 through 2.0.5, these functions are broken for negative numbers:

• Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to 0.
• Anything between -0.6 and -1 is rounded to +1 (plus 1).
• Anything between -1 and -1.6 is rounded to -1.
• Anything between -1.6 and -2 is rounded to -2.
• Etcetera.

Fixed in 2.0.6 (backport from 2.5).

Declarations:

In Firebird 1.0.x, the entry point for both functions is round:

DECLARE EXTERNAL FUNCTION Round
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'round' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Round
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'round' MODULE_NAME 'fbudf'

In Firebird 1.5, the entry point has been renamed to fbround:

DECLARE EXTERNAL FUNCTION Round
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbround' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Round
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbround' MODULE_NAME 'fbudf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *round
and *truncate declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

rpad

Library: ib_udf

Added in: 1.5

Changed in: 1.5.2, 2.0

Description: Returns the input string right-padded with padchars until endlength is reached.

126

External functions (UDFs)

Result type: VARCHAR(n)

Syntax:

rpad (str, endlength, padchar)

Declaration:

DECLARE EXTERNAL FUNCTION rpad
 CSTRING(255) NULL, INTEGER, CSTRING(1) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_rpad' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULLs after the CSTRING arguments
are an optional addition that became available in Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result is a string with endlengh padchars
(if str is NULL) or a copy of str itself (if padchar is NULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• When calling this function, make sure endlength does not exceed the declared result length.

• If endlength is less than str's length, str is truncated to endlength. If endlength is negative, the
result is NULL.

• A NULL endlength is treated as if it were 0.

• If padchar is empty, or if padchar is NULL and the function has been declared without the NULL keyword
after the last argument, str is returned unchanged (or truncated to endlength).

• Before Firebird 2.0, the result type was CHAR(n).

• A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf

Changed in: 1.5, 1.5.2, 2.0

Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to use the internal function TRIM instead, as it is both more powerful and more versatile.

127

External functions (UDFs)

Result type: VARCHAR(n)

Syntax (unchanged):

rtrim (str)

Declaration:

DECLARE EXTERNAL FUNCTION rtrim
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_rtrim' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In Firebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)

Syntax:

sdow (atimestamp)

Declaration:

DECLARE EXTERNAL FUNCTION sdow
 TIMESTAMP,
 VARCHAR(5) RETURNS PARAMETER 2
 ENTRY_POINT 'SDOW' MODULE_NAME 'fbudf'

128

External functions (UDFs)

See also: dow

srand

Library: ib_udf

Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiple srand() calls within the same second will return the same value. This is exactly how rand()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION

Syntax:

srand ()

Declaration:

DECLARE EXTERNAL FUNCTION srand
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_srand' MODULE_NAME 'ib_udf'

sright

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the rightmost numchars characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)

Syntax:

sright (str, numchars)

Declaration:

DECLARE EXTERNAL FUNCTION sright
 VARCHAR(100) BY DESCRIPTOR, SMALLINT,
 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'right' MODULE_NAME 'fbudf'

string2blob

Library: fbudf

129

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the input string as a BLOB.

Result type: BLOB

Syntax:

string2blob (str)

Declaration:

DECLARE EXTERNAL FUNCTION string2blob
 VARCHAR(300) BY DESCRIPTOR,
 BLOB RETURNS PARAMETER 2
 ENTRY_POINT 'string2blob' MODULE_NAME 'fbudf'

strlen

Library: ib_udf

Added in: IB

Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTH()

Description: Returns the length of the argument string.

Result type: INTEGER

Syntax:

strlen (str)

Declaration:

DECLARE EXTERNAL FUNCTION strlen
 CSTRING(32767)
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_strlen' MODULE_NAME 'ib_udf'

substr

Library: ib_udf

Changed in: 1.0, 1.5.2, 2.0

Description: Returns a string's substring from startpos to endpos, inclusively. Positions are 1-based. If
endpos is past the end of the string, substr returns all the characters from startpos to the end of the string.
This function only works correctly with single-byte characters.

Result type: VARCHAR(n)

130

External functions (UDFs)

Syntax (unchanged):

substr (str, startpos, endpos)

Declaration:

DECLARE EXTERNAL FUNCTION substr
 CSTRING(255) NULL, SMALLINT, SMALLINT
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_substr' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In InterBase, substr returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are slightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrlen

Library: ib_udf

Added in: 1.0

Changed in: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at startpos and having length characters (or less, if the end of
the string is reached first). Positions are 1-based. If either startpos or length is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)

Syntax:

substrlen (str, startpos, length)

131

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTION substrlen
 CSTRING(255) NULL, SMALLINT, SMALLINT
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_substrlen' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substrlen
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

truncate, i64truncate
Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changed in: 1.5, 2.0.6

Description: These functions return the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)

Syntax:

truncate (number)
i64truncate (bignumber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, truncate(-2.37) returns -3.

132

External functions (UDFs)

Bug alert

Contrary to what's mentioned above, in versions 2.0 through 2.0.5 anything between -1 and 0 is truncated to 0.
This anomaly has been corrected in Firebird 2.0.6 and above (as a backport from 2.5).

Declarations:

In Firebird 1.0.x, the entry point for both functions is truncate:

DECLARE EXTERNAL FUNCTION Truncate
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'truncate' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Truncate
 NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'truncate' MODULE_NAME 'fbudf'

In Firebird 1.5, the entry point has been renamed to fbtruncate:

DECLARE EXTERNAL FUNCTION Truncate
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Truncate
 NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *round
and *truncate declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

133

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer transliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets – such as SJIS (Japanese) and WIN1251 (Russian) – even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “as is” and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese
data columns using either parameterized queries or literal strings without introducer syntax would fail with
transliteration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “as is” but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set is NONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw a transliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sqlsubtype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling
heterogeneous character sets from a client context that is anything other than NONE. Both methods are shown
below, using character set ISO8859_1 as an example target. Notice the “_” prefix in the introducer syntax.

Introducer syntax:
_ISO8859_1 mystring

Casting:
CAST (mystring AS VARCHAR(n) CHARACTER SET ISO8859_1)

134

Notes

Understanding the WITH LOCK clause
This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides a limited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:

a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who
thoroughly understand its consequences. Knowledge of the various levels of transaction isolation is essential.
WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTs. As stated in the
reference part of this guide, WITH LOCK is not available:

• in a subquery specification;
• for joined sets;
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
• with a view;
• with the output of a selectable stored procedure;
• with an external table.

Syntax and behaviour

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 [WITH LOCK]

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

As the engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardless of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are
ignored.

isc_tpb_concurrency If a record is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has

135

Notes

TPB mode Behaviour

+ isc_tpb_nowait performed a modification of this record, an update conflict exception is raised
immediately.

isc_tpb_concurrency

+ isc_tpb_wait

If the record is modified by any transaction that has committed since the
transaction attempting to get explicit lock started, an update conflict exception is
raised immediately.

If an active transaction is holding ownership on this record (via explicit locking
or by a normal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed

+ isc_tpb_nowait

If there is an active transaction holding ownership on this record (via explicit
locking or normal update), an update conflict exception is raised immediately.

isc_tpb_read_committed

+ isc_tpb_wait

If there is an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the
explicit lock waits for the outcome of blocking transation and when it finishes,
attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either raises an update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
is the same as if this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, via joins, subqueries, etc. It also guarantees that rows not meeting the search conditions will not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches”). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

136

Notes

The optional “OF <column-names>” sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<column-names>” subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. This would
enable you to process the currently-locked row before the next is fetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

• Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

• While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

• Most applications do not need explicit locks at all. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to a relational database in a clustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

• Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

i. Simple:

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?
 FOR UPDATE WITH LOCK

A note on CSTRING parameters
External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in
such a way that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL data types. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste
to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most

137

Notes

CSTRING functions – as found in the file ib_udf.sql – specify a length of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of lpad:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(255), INTEGER, CSTRING(1)
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf'

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or cause it to return a string longer than the declared output length. But the standard declarations are
just reasonable defaults; they're not cast in concrete, and you can change them if you want to. If you have to left-
pad strings of up to 500 bytes long, then it's perfectly OK to change both 255's in the declaration to 500 or more.

A special case is when you usually operate on short strings (say less then 100 bytes) but occasionally have to call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the calls will be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(100), INTEGER, CSTRING(1)
 RETURNS CSTRING(100) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTION lpadbig
 CSTRING(32000), INTEGER, CSTRING(1)
 RETURNS CSTRING(32000) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

Now you can call lpad() for all the small strings and lpadbig() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Passing NULL to UDFs in Firebird 2
If a pre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to a zero-equivalent, e.g. a numerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. The fbudf library uses descriptors, but the
vast majority of UDFs, including those in Firebird's standard ib_udf library, still use the old style of parameter
passing, inherited from InterBase.

As a consequence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as a null pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question, e.g. like this:

declare external function ltrim
 cstring(255) null
 returns cstring(255) free_it
 entry_point 'IB_UDF_ltrim' module_name 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

138

Notes

Please note that you can't just add NULL keywords to your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Always look at the declarations provided by the function implementor. For the functions in the ib_udf library,
consult ib_udf2.sql in the Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
are in ib_udf.sql.

These are the ib_udf functions that have been updated to recognise NULL input and handle it properly:

• ascii_char
• lower
• lpad and rpad
• ltrim and rtrim
• substr and substrlen

Most ib_udf functions remain as they were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of a referenced type.

On a side note: don't use lower, .trim and substr* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” ib_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2, and you want
to benefit from the improved NULL handling, run the script ib_udf_upgrade.sql against your database. It
is located in the Firebird misc\upgrade\ib_udf directory.

Maximum number of indices
in different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them all up.

Table A.2. Max. indices per table in Firebird 1.0 – 2.0

Firebird version(s)

1.0, 1.0.2 1.0.3 1.5.x 2.0.x

Page
size

1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 65 65 65 1022 818 681 257 257 257 818 584 454

139

Appendix B:
Document History

The exact file history is recorded in the manual module in our CVS tree; see http://firebird.cvs.sourceforge.
net/viewvc/firebird/manual/

Revision History
0.9 24 Sep 2008 PV First publication, based on the Firebird 1.5 Language Reference

Update with all the changes for 2.0 added (roughly doubling the size).

1.0 8 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headers to “Better
alternative”. This also required editing the text immediately following
the header and in some cases additional text in the section (if the
“deprecation” was discussed in the section body).
Bookinfo: Added 2.0.6 to covered versions.
Introduction :: Versions covered: Added 2.0.6.
Introduction :: Authorship: Edited first paragraph. Added Frank
Ingermann to contributor list.
Miscellaneous language elements: Added section Shorthand casts.
Data types and subtypes :: BLOB data type: In Description, BLOBs -
> text BLOBs. Also added information on new binary mnemonic +
extra example.
Data types and subtypes :: New collations: Edited paragraph above
table. Improved the two paragraphs below the table and moved them
into a Note.
DDL statements :: ALTER DATABASE: Merged difference file clauses
onto one line in Syntax.
DDL statements :: ALTER DOMAIN: Added section Rename domain.
DDL statements :: ALTER TABLE: Added section FOREIGN KEY without
target column references PK.
DDL statements :: ALTER TRIGGER: Corrected formal syntax (can be
called with just the trigger name and no modifications).
DDL statements :: CREATE DATABASE: Moved Syntax one level up,
marked it as partial and added DIFFERENCE FILE clause. Added new
subsection DIFFERENCE FILE parameter.
DDL statements: Added section CREATE EXCEPTION.
DDL statements :: CREATE INDEX: Edited Description and Syntax.
DDL statements :: CREATE INDEX :: Indexing on expressions: Edited
Description.
DDL statements :: CREATE INDEX :: Maximum number of indices per
table increased: Edited paragraph under table.
DDL statements :: CREATE TABLE: Added section FOREIGN KEY
without target column references PK.
DDL statements :: CREATE VIEW :: Full SELECT syntax supported:
Added Note about the necessity of a full column list when using a
union within a view (to become optional in 2.5).
DDL statements :: CREATE VIEW :: PLAN subclause disallowed in 1.5:
Changed title to PLAN subclause disallowed in 1.5, reallowed in 2.0.

140

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://sourceforge.net/cvs/?group_id=9028
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://sourceforge.net/cvs/?group_id=9028

Document History

DDL statements :: CREATE VIEW: Added subsection View with non-
participating NOT NULL columns in base table can be made insertable.
DDL statements :: DECLARE EXTERNAL FUNCTION: Added Note under
Syntax.
DDL statements :: DECLARE EXTERNAL FUNCTION :: BY DESCRIPTOR
parameter passing: Added “Available in”.
DDL statements :: DECLARE EXTERNAL FUNCTION :: RETURNS
PARAMETER n: Added “Available in”. Changed subclause ->
clause in Description (2x).
DDL statements :: DECLARE FILTER: Edited Description. Added
user_defined to Syntax. Added more info under Syntax block and
made it an itemizedlist. Converted Tip to formalpara User-defined
mnemonics.
DML statements :: DELETE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.
DML statements :: DELETE: Added subsection COLLATE subclause for
text BLOB columns.
DML statements :: DELETE: Added subsection Relation alias makes
real name unavailable.
DML statements :: EXECUTE BLOCK: Edited Syntax block.
DML statements :: INSERT: Added definition of <select_expr> to
Syntax.
DML statements :: INSERT :: RETURNING clause: Edited Description.
Added formalpara “Note”.
DML statements :: SELECT :: Aggregate functions: Extended
functionality :: Aggregate statements: Stricter HAVING and ORDER BY:
Edited second listitem. Edited last paragraph.
DML statements :: SELECT :: FIRST and SKIP: Added “Available in”.
DML statements :: SELECT :: Table alias must be used if present:
Renamed to Relation alias makes real name unavailable. Also changed
Description and paragraph before last example.
DML statements :: UPDATE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.
DML statements :: UPDATE: Added subsection COLLATE subclause for
text BLOB columns.
DML statements :: UPDATE: Added subsection Relation alias makes
real name unavailable.
Transaction control statements :: SET TRANSACTION: Edited 2nd
listitem after Syntax block.
PSQL statements: Changed introductory paragraph to mention
executable blocks.
PSQL statements :: DECLARE :: DECLARE ... CURSOR: Edited
Description. Added Notes formalpara.
PSQL statements :: DECLARE [VARIABLE] with initialization: Indented
var declarations in Example.
PSQL statements :: EXCEPTION :: Providing a custom error message:
Added note about max message length.
PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Changed SQL -> DSQL in item 4. Rewrote item 6.
PSQL statements: Added section FOR SELECT ... INTO ... DO.
PSQL statements: Added section WHERE CURRENT OF invalid for view
cursors.

141

Document History

Context variables :: CURRENT_CONNECTION: Improved Description.
Added note about upcoming change in 2.1 to last paragraph.
Context variables :: CURRENT_TIME: Edited description. Removed
Note and added Notes formalpara.
Context variables :: CURRENT_TIMESTAMP: Edited description.
Removed Note and added Notes formalpara.
Context variables :: CURRENT_TRANSACTION: Improved
Description.
Context variables :: 'NOW': Added shorthand cast examples. Removed
Note and added Notes formalpara.
Operators and predicates :: || (string concatenator): New subsection
Result type VARCHAR.
Operators and predicates :: || (string concatenator) :: Overflow
checking: Corrected “Changed in” and Description.
Internal functions :: BIT_LENGTH(): Edited Note after Syntax block and
placed it after Description.
Internal functions :: CAST(): Added introductory paragraphs before 1st
and 2nd example. Gave table rows top alignment. Added paragraph
after “cast (? as integer)” example.
Internal functions :: CHAR_LENGTH(), CHARACTER_LENGTH(): Edited
Note after Syntax block and placed it after Description.
Internal functions :: LOWER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR.
Internal functions :: OCTET_LENGTH(): Edited Note after Description.
Internal functions :: RDB$GET_CONTEXT(): Added Note after title.
Replaced “general” with “global” (4x) in System namespace table.
Internal functions :: RDB$SET_CONTEXT(): Added Note after title.
Altered 3rd listitem in Notes formalpara.
Internal functions :: SUBSTRING(): Edited Result type, Syntax and
much of the text in the rest of this section.
Internal functions :: TRIM(): Edited/corrected Description, Result type
and Syntax.
Internal functions :: UPPER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR. Corrected “See also” link: UPPER -> LOWER.
External functions :: getExactTimestamp: Edited “Better
alternative” and Description.
External functions :: log: Changed log -> log(x,y) in Description.
External functions :: right: moved to sright and left a symlink in
place.
External functions :: round, i64round: Added 2.0.6 to Changed in.
Added Caution box. Edited and extended Bug warning box. Extended
last paragraph.
External functions: Added section strlen.
External functions :: truncate, i64truncate: Added 2.0.6 to
Changed in. Added Caution box. Edited Warning box. Extended last
paragraph.
Notes :: Understanding the WITH LOCK clause :: Syntax and
behaviour: In table, aligned 1st column left, all rows top, and added
periods to sentences in first two rows.
License notice: Added Frank Ingermann as contributor. Copyright end
year now 2010.

142

Document History

1.1 00 Xxx 2011 PV Introduction :: Subject matter: Changed ulink to Firebird
Documentation Index (both text and url).
DDL statements :: ALTER DATABASE :: END BACKUP: Updated URL
of Firebird Documentation Index in Tip.
DML statements :: SELECT: New subsection [AS] before relation alias.
DML statements :: SELECT :: ROWS: Removed illegal first ORDER BY
from UNION example and compacted layout. Edited the “When used
with a UNION...” para (further down in this section) accordingly.
Context variables :: GDSCODE: Rewrote Description in light of new,
so far undocumented behaviour since Firebird 2.0. Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.
Context variables :: SQLCODE: Added “Changed in” formalpara.
Rewrote Description in light of new, so far undocumented behaviour
since Firebird 2.0.
Internal functions :: LOWER(): Added Note after Syntax.
External functions :: lower: Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
Document history: Link to CVS changed, points directly to manual
module now.
License Notice: (C) end year now 2011.

1.2 4 Oct 2024 MR Added links to Firebird 5.0 Language Reference as more recent
documentation

143

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the
“License”); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and https://www.firebirdsql.org/
manual/pdl.html (HTML).

The Original Documentation is titled Firebird 2.0 Language Reference Update.

The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.

Copyright (C) 2008–2024 All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material (the “al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Alex Peshkov, Nickolay Samofatov, Dmitry Yemanov, Mark Rotteveel.

Included portions are Copyright (C) 2001-2024 by their respective authors. All Rights Reserved.

144

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html
https://www.firebirdsql.org/manual/pdl.html

	Firebird 2.0 Language Reference Update
	Table of Contents
	Introduction
	Versions covered
	Authorship

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	New character sets
	Character set NONE handling changed
	New collations

	DDL statements
	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	ALTER EXTERNAL FUNCTION
	ALTER PROCEDURE
	Default argument values
	Restriction on altering used procedures

	ALTER SEQUENCE
	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TRIGGER
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	COMMENT
	CREATE DATABASE
	16 Kb page size supported
	DIFFERENCE FILE parameter

	CREATE DOMAIN
	Context variables as defaults

	CREATE EXCEPTION
	Message length increased

	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	CREATE PROCEDURE
	CREATE SEQUENCE
	CREATE TABLE
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	CREATE TRIGGER
	Multi-action triggers
	CREATE TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	CREATE VIEW
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base table can be made insertable

	CREATE OR ALTER EXCEPTION
	CREATE OR ALTER PROCEDURE
	CREATE OR ALTER TRIGGER
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	DECLARE FILTER
	DROP GENERATOR
	DROP PROCEDURE
	Restriction on dropping used procedures

	DROP SEQUENCE
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE EXCEPTION
	RECREATE PROCEDURE
	Restriction on recreating used procedures

	RECREATE TABLE
	RECREATE TRIGGER
	Restriction on recreating used triggers

	RECREATE VIEW
	REVOKE ADMIN OPTION
	SET GENERATOR

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	EXECUTE BLOCK
	EXECUTE PROCEDURE
	INSERT
	RETURNING clause
	UNION allowed in feeding SELECT

	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	[AS] before relation alias
	COLLATE subclause for text BLOB columns
	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF invalid for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Result type VARCHAR
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Internal functions
	BIT_LENGTH()
	CAST()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	EXTRACT()
	GEN_ID()
	IIF()
	LOWER()
	NULLIF()
	OCTET_LENGTH()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	SUBSTRING()
	TRIM()
	UPPER()

	External functions (UDFs)
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	dow
	dpower
	getExactTimestamp
	i64round
	i64truncate
	log
	lower
	lpad
	ltrim
	*nullif
	*nvl
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird versions

	B. Document History
	C. License notice

