Firebird 2.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
18 Oct 2011, document version 1.2 — covers Firebird 2.5 and 2.5.1

Firebird 2.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

18 Oct 2011, document version 1.2 — covers Firebird 2.5 and 2.5.1
Paul Vinkenoog et al.

Table of Contents

O gL (0T 18 i1 o] o OO PP TPPPRP PP 1
S o= ot 1 1= 1 PP PPPEP T PPPRPPPPPPPP 1
VEISIONS COVENEAooiiiiiiieiitte ettt ettt e e et e e e et e e e st e e e st e e e e b e e e e e e sne e e e e annre e e e e nnnreeenanes 1
L U110] o PSP PRP P PPPRPPPPRPPN 2
ACKNOWIEAGIMENTS ...ttt e e sk e e e e bt e e s ann et e e e nn e e e e e anreeeenn 2

2. NEW N FITEDINA 2.5 ...ttt et e e et e e e s e e e s ab e e e e e e e e e e annneeeeans 3
Reserved WOords and KEYWOITSoooiiiiiiiiiiiiie et e e e s e e e 3
IMISCEITBINY ..ttt ettt e e e a e e e ekt e e e st e e e e e e e e e e nn e e e e e e e e e e e nnnees 3
Data typeS @N0 SUDLYPEScoiiuiiiiieiiiie ettt e e e st e e e e e e e e s 3
Data Definition Language (DDL)cocueeeeoiiieee ettt e e 4
Data Manipulation Language (DMLoiieeieoiiieeee et 4
P OOL SlAIEIMIEIIES ... e 4
SeCuUrity and @CCESS COMEIOIoeiiiiiiieiirii ettt e et e e e et e e et e e e s e e e s e e e e e s annn e e e e s snrreeeens 4
CONEXE VANTADIES ...t e e e e e e e e e e e e e 5
OpErators AN PrEAICAEESc.vveeeeiiieie ettt e et e st e e et e e ek e e e s s b e e e s e e e e s nnr e e e e anne e e e s annneeas 5
AQOregae FUNCLIONSeeieiiiiieie ettt ettt e et e e ek e e e e e st e e e aab e e e e s s b e e e e e anre e e e s annnneeeaas 5
INEEINAl FUNCLIONS ...t e e et e e e e e e nb e e e e e e e e e e e nnr e e e e e nnes 5

3. Reserved WOords and KEYWOITScooiiiiiieiiiiiee ettt e e s e e e s e e e anneeee s 6
Added SINCE INTEIBASE 6eeiiiiiiee e e e s e s es 6

NEWIY TESEIVEA WOITS ...ttt e e e s e e annneees 6
NEW NON-TESEVEI KEYWOITSviiiiiiiiiie ettt e e 7
Dropped SINCE INTEIBASE 6veiiiiiiieie e e et e e s 9
No longer reserved, Still KEYWOITSoooiiiiiiiiiii e 9
NO longer reserved, NOt KEYWOITScoouiiieeiiiiee et 10
POsSIbly reserved in fULUrE VEISIONSoooiiiiiiieiieee et 12

4. Miscellaneous 1aNguage ElEMENTScoiiiiiiii e e e e e e e 13
== (SINGIE-TINE COMMIBNT) ...ttt e e r e e s e e e e e e e e 13
Hexadecimal Notation fOr NUIMENEISoooiiiiiiiiiii e 13
Hexadecimal notation for “Dinary” SIINGSccoiuirieiiiiiie e 14
ShOrthand JEEELIME CASESveiieiiiiie e e e e e e annne e s 15
L7 oo 1 1 o T 16

SIMPIE CASE .ottt et e e e a et e e ek e e e e e e e e e e e e e e e e 16
SEANCNEA CASE ...ttt ettt e e et e e e e e et e e n e e n e e e e nnes 16

5. Data typeS aNU SUDLYPEScouueiiieiiiiiie ettt e ekt e e et e e e e e e e e e e e e b e e e e e nanes 18
BIGINT GBEA LY ...eeeeeeiiitiee ettt ettt ettt et e e e e e e e ettt e e e s et e e e e e e e anbne e e e e s e e e e e nnes 18
BLOB T8LA TY[IE .. eteeteeiiteie e ettt ettt e e et e et e e ek e e e e et e e et e e e e e e e e s 18

Text BLOB support in funCtions and OPEIraLOrSccuveeeeiiireeeeiiieeesaiieee e s e s sreee e 18
VariOUS ENNANCEIMIENLSccoiiiiiieeiiiie e et e et e e et e e e e e e e anee e e e s asbe e e e s asne e e e e annreeesannneeeaas 19
SQL_NULL GBEA LY ..eteeeeeittiee e sttt e ettt et e sttt e e ettt e e s e e e s e e e e e s e et e s e s e e e e s nne e e e e nnnrneeenan 19
[1[0 07 PP PP PPPPPPPRP 20
USE 1N PIACLICEeeeeeeeiiieee ettt e e et e e et e e e e e e e e ns e e e e e anne e e e e annre e e s annneeeans 21
NEW ChEIBCIEN SEESeieeeeii ittt e e et e e e e e e e e e e e e e e anrnneeen 21
Character set NONE handling Changedoooiiiiiiioiiiic e 22
INEW COHBEIONS ...ttt ekttt e et e e e st e e e s e e e e e bt e e e enn e e e e e anb e e e e e annn e e s 23
Unicode collations for all CharaCter SatSoooiiiiiiiiiic e 24

6. DL SEBLEMIENLS ... iieeeeeeiee e e e e et e e e e e s st e e e e e e e s s s e e e e e e e e s s s s e e e e e e e e s aan R R e e e e e e e e s e annrnrrreeeeas 25

CHARAGCTER SET .eiiiiiitite ettt ettt ettt ekt a e e e e e e 1kttt e e e s et e e e aab e e e e e s se e e e e ann b e e e e e annn e e e e nnneeeeaas 25
ALTER CHARACTER SET ..otiiiiiiitiiteiitteie ettt e sttt e et e st e s e e e s e e e e s e nnn e e e s annnneeeennnes 25
COLLATION .ttt ettt etttk e et e e okt e 4t e £ 4 s b et e 42 s e e 424k et e oo e R e et e e e e mbe e e e e e nnne e e e anrneeenn 25

Firebird 2.5 Language Ref. Update

CREATE COLLATION L..iittiiiiitteee ettt eeeeta s e e s et e s s st sassaa s e s st sess b s s ssban s sssbas s ssabansesrabansns 25
(D20 = @@ I Y-] 28
(@0 111 =\ 28
DN Y = 29
CREATE DA T ABASE ..ottt e ettt e et e ettt e et et e e ettt e e et et s e sttt e st et e eesebassssebanseeserannns 29
ALTER DAT ABASE oottt ettt e et e et et e s e aa s e s e bt s e s e baeesebaa s e s e baa s e s s b essebaa s ersbanssns 30
D10 Y 1 T 31
CREATE DOMAIN otttieiit e ee et e ettt e e ettt e e e e et s e e e et s e e s et s e e s e ba s essesba s esssabseesssbasssesbasessraanns 31

F N = e DL N 1 32
3= = T T 32
(@] YN I = =y O = = [0 32
CREATE OR ALTER EXCEPTION ..ittuiiiiittiiieitt s eeeiete e e e et s e e ssbs s e s ssbas s s s ssbasssssbassssebanseessransns 33

[O Ny = = O = = [0 T 33
EXTERNAL FUNCTION L.iittuiiiiittiieiiti i eeeeti e e e esstssssssaasesessaassssssaassssssaassesaaa s sesssnssssssnsssesssnsssessnns 34
DECLARE EXTERNAL FUNCTIONiiiitiiiiiiii e it eeeeete e e e setssssestaessssatasssssssasssssssnnsssssranseees 34
ALTER EXTERNAL FUNCTION ..iutuiiiiittiieiittieeeiti s eeeest s ssssstssssssaassssssaasesssssnssassstasssssssnseesees 34
I T 35
[O I i R I = 35
1NN T 36
(@] 7N = 1|5 =5 G 36
PROGCEDUREiiiittiieitt e e ettt e et e e et et e e et et e e et et s e e te b e ea s et s ea s e b s es s e ban s sssebanssssebanessebanssasebannss 38
CREATE PROCEDUREoutiiiiitiiee ittt ettt e e ettt e e et et e e e et e e e s et s e st et e e e s st e e s seban e e s se b eesebansns 38

Y e = =00 = D10 = 41
CREATE OR ALTER PROCEDUREutiiiitiieiitt ettt e e s e et s e s e s s s st s s s e b s s s saaas s s s eran s 42
DROP PROCEDUREiiittiie ittt ee et e ettt s e e et e s e et s s s s e e e s s s b e s s ea b s s s s sba e e s ebbasesebaaeeseransns 43
RECREATE PROCEDUREcuutiiittiiieieteee ettt e e ettt e e s sete s e e sats s s s sa b s s s sabasssssbassssabassesesbnnaeeens 43
SEQUENCE OF GENERATORoiiiiittiiieeiee e e e et eettee e e e e e et e e et aa e e e e e e e e e aas e e eeeeeeeessbbaseeeeeeeeessrannnnns 43
CREATE SEQUENCE ...ttt e e e ettt e et e e e e e et e e e e e e e e e ea e b e e e e e e e e eas bbb e e eeeeeeeasaraaneeeees 43
CREATE GENERATOR ..otutiiiittt e ee it e e ettt e e ettt s e e s abe e e et et e e s s et e s s sa b s e s sa b s s e seba e sssbanseesebanssns 44
ALTER SEQUENCE ...otiiiiiie ettt et e ettt e e e e e e e et e e e e e e e e e ea et e e e eeeeeseasbbaaeeeeaeeseesrarannnes 44

S T = N = T O] = TR 45
DROP SEQUENCEcovvtuiieiieeeiieeetiee s e e e e e e e et te et e e e e e e eeetat e e aeeeeeeeeastaasaeeeseeesstaaaeeeseeeessraannns 45
(D)0 =l €] = N = 7Ny (O] = 46

B 17N =1 = 46
(@] N I i 7 = T 46

N 1 N =1 I = 51
Ot 7Ny I 7 = 55
BT 55
(O] N I i] = = 55

F N I I LT = T 59
CREATE OR ALTER TRIGGER ... ciituuiiiiitiiee et ee ettt s e e e et e e e e et s e e s st s e s e st s s s sabs e s s saba e e asabanans 61
(D0 = I = (€T = T 61

[O Y I g T 1] = = T 62

RV A1 Y 62
CREATE VIEW ettt ettt ettt e e et et e e et et e s et et e e et aba e e e e st e e s esbas s e s sabanseessbanssesnsanseans 62

F N 1 YA 1 =Y 65
CREATE OR ALTER VIEW ottt et ettt e et e e e ettt e e e e et s e e e et s e s e s tba s e s sssba e s esbbn s esenabnseaaes 65
RECREATE VIEW .oiiittiiiiite ettt e ettt e e et e e e s e et e e e et b e e s e s b e e s e s b e e s e saasesesaas s s sesbasseserbnssesesnas 65

A D LY L = (= T | PN 67
)= I 1 = 67
COLLATE subclause for text BLOB COIUNMINSccivueiiiiiieieeeee e eeeee e e et s e e sebs e e s s e s e e saaan s 67
(@] = 3 = TR 68

Firebird 2.5 Language Ref. Update

o I N USROS 68
Relation alias makes real name unavailableccueiiiiiiiiiiiii e 68
RETURNING ...ttt ettt ettt ettt ettt ettt et e et e et e e e e et et e e sttt e e ab et e kbt e e eab e e e bb e e e be e e eabeeeanneeeanneas 68
ROWVS .ttt ettt ettt ettt e o2ttt o4 skt oo a bt £ Rt £ e ek bt e £ R b e e S bt e e e bt e e eabe e e e be e e enbe e e anbeeennreeeas 69
EXECUTE BLOCK ...etitteteitieaatteeeatteeaateeeaatseeatseeateessabeeeaabeeeaabeeeaabe e e aabe e e aab e e e abbeeeabseeebeeeabeeeannneens 69
COLLATE in variable and parameter deClarationsocoiiureeeiiiiieee i 71

NOT NULL in variable and parameter deClarationscoeeiiieieeiniiieeeiiieee e 72
Domains iNStead Of TatA TYPESvveeiiiiiiee ittt e e 72
TYPE OF COLUMN in parameter and variable declarationscooovveeeiniiiee e 73
EXECUTE PROCEDUREuciiiutiiiittiaaititeastteeateeeateaeateeeaabeaeasteeeaabeeeasbeeaasbeeaabeeeabeeeanbeeeanneeesnneeeas 73
1S = USRI 74
INSERT ... DEFAULT VALUES ...ciiitiiiiiiie ittt ettt ettt aie e bee e s e e snbe e e e e e nnneeennneas 75
RETURNING ClAUSE ...cciuitiiiiiie ettt ettt ettt ettt e et e e s e e e enbe e e nnbe e e 75
UNION allowed in feeding SELECToiiiiiiiiieeiiiiiee et et e e s e e 76
IMERGE ...ttt ettt ettt ettt ettt ettt ettt ekttt e a bt a bt e oAb e £ R h e £ oAb £t oAb e e e Ra e e e R b e e he e e e be e e enbe e e enbe e e anbeeennes 76
S I O TP TP 77
Aggregate functions: Extended fUNCLIONAIITYcoioiriiiiiiiiiee e 77

[AS] DEfOre relation @li@Sccocuuiiiiiiiiee e 79
COLLATE subclause for text BLOB COIUMINSccviiiiiiiiiieeiiiiie et 80
Common Table Expressions (“WITH ... AS ... SELECT”) ..iicuuiieiiiiiie ettt 80
Derived tables (“SELECT FROM SELECT”) ...uuiiiieiiriieienirieesieeeesieeesireesneeesieessneessnneeesnneesnnes 82
FIRST @NA SKIP ..ttt ettt ettt ettt sttt et et e e e bt e e as bt e e e mb e e e amb e e s abb e e e nbeeanneeenneeas 83
GROUP BY ittt ettt ettt ettt ettt ettt a et o4 skt e ekttt £ kbt e £k bt e £ hb e e e be e e e ke e e eabe e e eabe e e enbe e e nnbe e e nnneas 85
HAVING: SHTCEEN TUIESeeiiiiiiiee e ettt e e e ettt e e e e s ettt e e e e e s s st bee e e e aaeeessnsnnseeeeaeeenans 86
O | TP OPPRI 86
(012 = = = 3 PR P PP OPPP 88

o I N USROS 91
Relation alias makes real name unavailableccueiiiiiiiiiiiii e 92
ROWVS ettt ettt etttk ettt ekt e sttt o4 a ke e 4Rt e e £ H b £ e £k bt e £ kbt e S b e e e e bt e e eabe e e e be e e enbe e e anbeeennreeeas 92
UNTON etttk ettt e et oa e £ o R bt £ kbt £kt e £k b e ookt e e £ ket e eabb e e eabe e e anbe e e enbeeeenneeeanneas 93
WITH LOCK .ttt ettt ettt ettt ettt ekt ettt e et e et et e ea ke e o ab et e e s bt e e e ab e e e emb e e e eab e e e enteeenneeennneas o4
UPDATE .ttt ettt ettt etttk e sttt oo st e e h b4 ekt e £k e e e ok e £ e 4R bt e ek et e oAb e e e oA be e e eab e e e en b e e e eRb e e e anbeeennneeea 95
Changed SET SEMANTICSeeviiiiiiieeiiiiiie ettt s st e s r e e s e e e s abre e e e s anne e e e e annes 95
COLLATE subclause for text BLOB COIUMINScocviiiiiiiiiieeiiiie et 96
(012 = = 3 PRSP 96

o I N USROS 97
Relation alias makes real name unavailableccvviiiiiiiiieii e 97
RETURNING ...ttt ettt ettt ettt ettt ettt ettt e bt e et et oo st e e e eab e e hb e e e ehb e e e kbt e e abe e e e nbeeeenneeeanneas 97
ROWVS ettt etttk etttk ekt 42ttt oo skt o4 h b e £ H b £ a2k bt e £ kbt e e st e e e be e e e bt e e e Rt e e enbe e e anbeeennneeeas 98
UPDATE OR INSERT ..uttiiittteattee ettt e aiteeeasteeaatseeaasseeabeeesabeeeambeeeaabeeeasbeeeambeeaabbeeabaeeaneeeanbeeeanneeens 98
8. Transaction CONLIOl SAIEMENTSveeieiiiiiee et e ettt e e s e e e e s e e e s nnreeeeaas 100
RELEASE SAVEPOINT ..uitiiiitieattteateee ettt e siteeeastee ettt e asetesbseesabeeeambe e e sabe e e aabe e e asbeeaneeeaneeeanneeeanes 100
I = 7Y 1 ST R TP 100
ROLLBACK RETAIN ...eiieittieiitieeeitie et et e ettt e e s e e e sate e e aste e e sab e e e asbe e e be e e e beeeanbeeesnbeeeanneas 100
ROLLBACK TO SAVEPOINT ...ttiiiiiiiitieeeitteeaateeeaiteeabeeesteeesabeesssbeeesmbeessnseessnseeessneesanseeenes 101
YNV = @ 1 N PSPPSR 101
INEEINAl SAVEPOINTS ...ttt e ettt e e e e e s e b e e e et e e e e e nnneeas 102
SAVEPOINES BNG PSQL ...ttt e et e e e e e e e e e e 103

SET TRANSACTION ..ttt ettee ettt ettt ettt e bt e bt e e ettt e s abe e e aab e e e aa b e e e as bt e e abbe e e asbe e e abeeeneeesnneeesnneeas 103
IGNORE LIMBO ...ciiuttiiitiieattee it ee ettt ettt e st e e sabe e e sabe e e sab e e e sabe e e aab e e e bt e e e abb e e e beeeebeeeanseeeannneean 104
LOCK TIMEOUT ..ettieiutieeiuteeaetteeaettee it e st e et e e s st e e s s te e e amt e e e bt e e e bte e e be e e eabe e e snbeeesnbeeenabeeennneas 104

NO AUTO UNDO ...utiiiiiiieeiee et aitee ettt e tee e te e e be e e abe e e aabe e e sabe e e aabe e e ssbe e e aabeeabbeesbeeeanneeeanes 104

Firebird 2.5 Language Ref. Update

R S O S (= 111 0[S PP 106
BEGIN ... END blOCKS May D& @MPLYeeieiiiiiiiie i 106
BREAK .ttt ettt R e e R e e e e oA et e e oo AR e e e e e en et e e e AR e e e e e e e e e e e nr e e e e e nnes 106
CLIOSE CUISOI ..eetttt e e eee ettt s e e e e et eeeett e s s e e e e e e eee b e s e e e aaeeeesbbn e e e eaeeeeess b aeeaeeseeessnnn e aaeeeennnnnns 107
DECLARE ..ttt te ettt oottt ettt e ookt e o4 e oo R e e oo R R et e e oA R e et e e et e e e e R e et e e e r e e e e e nn e e e e e e 107

DECLARE ... CURSOR ...ciiutttteeiititteaaisetae e sttt e e s aste et e s ettt e e e asbe e e e e asbe e e e e ansbn e e e e nnneneesannneeenan 107
DECLARE [VARIABLE] With initi@liZationccoiiiiiiiiiiiiicciieecceie e 108
DECLARE with DOMAIN instead Of datalyPeccoourreeiiiiiiieeiiiiiee e 109
TYPE OF COLUMN in variable deClarationcceeeeiiiiiieeiiiiie e 109
COLLATE in variable deClaralioncooiuiiiiiiiiiceeiieee et 110
NOT NULL in variable deCIarationcooeiiiiiieiiiiiiee e 110
EXCEPTION . iittttee ettt etttk e e e sttt e oo sttt e 44kt e e e sk et e ookt e e e e e st et e e e ean e e e e e anbn e e e e annneeas 111
Rethrowing a Caught EXCEPTIONviiiiiiiiii et 111
Providing @ CUSLOM ETON MESSAOEeveeeiirieeeeiiireee ettt e e st e e e s ssae e e e sesbe e e e s abnr e e e e nnnneeeeenres 111
EXECUTE PROCEDUREutiiiiiiiiitee et e ettt e st e e e st e e st e e e st e e e ante e e e s annne e e e annneeas 112
EXECUTE STATEMENT ..oiiiiitiiie ittt te ettt e ettt e ettt e e sttt e e s et e e e st e e e e e s b et e e e annbn e e e s anbneeeeannneeas 112
NO T8EA FEIUMEA ...ttt e e e e s e bt e e et e e e e e r e e e e snreeeeaas 113
ONE roW OF daa FEIUMEAveiieiiii et e e 114
Any number of data rOWS rEfUMEcueiiiiiiiie e 114
IMProved PETOMMEINCEcoiiiiiiiie ettt e e et e e e e e e ennes 115
WITH { AUTONOMOUS|COMMON} TRANSACTION ...ooiiiiiiiieeiiiieeeeaniineeessineeeessieneeesnneeeens 115
WITH CALLER PRIVILEGEScciutitieiiitiiee ettt ettt e e e e e e e e a e s 115
ON EXTERNAL [DATA SOURCE]uttiieiiiieieeiaiiie ettt e e s s e e e s 115
AS USER, PASSWORD @N0 ROLEcoutiiiiiiiiiie ettt e s ainee e e s nnenee e 117
Parameterized SEAEMENEScoiiuiiiieeiiii ettt e st e e e e e e s aneeeeeaa 118
Caveats With EXECUTE STATEMENT ...oiiiiiiiiiiiiiee ettt 119
3 TP PP OPPPRPRPPPRR 120
FETCH CUISOLieeititi e e e e et eeet s e e e ettt ettt e s s e e e e e e e e e s e s e e e e eeeeesbaa e s e e e e eeeeessan e s eeeeeeeesnnnn s aaeeeeeennnns 120
FOR EXECUTE STATEMENT ... DO ...uutiiiiiiiiieeeaiiiee e ettt e sttt e st e e e s e e e e s ansne e e e s b eeeeane 120
FOR SELECT ... INTO ... DO otiiiiitiiee ittt ettt ettt ettt et e e e et e e e e e e e e s n e e e s annnneeeann 120
AS CURSOR ClAUSE ...ceiiuiiieeeaaitieee ettt e et e e et e e e ettt e e e s s et e e e sbb e e e e asbe e e e e anbn e e e e e nnnneeeeennres 122
IN AUTONOMOUS TRANSACTIONitiiieiiiiiieeiiieeee st e e e aastee e s st e e s assee e e s asbe e e e s aneeeeeaannneeeeanees 122
LEAVE ittt E e e oo E e et e e R e et e e e R R et e e e n et e e e b e et e e e nne e e e e nnnes 123
OPEN CUISOIeeeiteettttia e e e e eeeeeaste s e e aaeeeeetsaa e s e aaeeeess s s e s e eaeeeeessaa e s aaeeeeesssanaasseaaeeennssnnnaaeaaaaenns 124
PLAN allOWed IN trIQGEN COUReeiiiiiiiiie ettt e e e e e e e s reeeane 124
Subqueries as PSQL EXPIESSIONSccoiiuurrieiiiirteesitireeeaaiiee e e s st e e e s sbee e e e aasne e e e s asbe e e e s anneeeeaannneeas 125
UDFs callable as VOId FUNCLIONSooiiiiiiiiieiiie et 125
WHERE CURRENT OF valid again fOr VIEW CUISOIScuurieeiiiiieeeiiieeeessineeeessneee e s e s 125

10. Security and 8CCESS CONIOIeeiiiiiiiieeiitei ettt e e e e e e e e s s e e e e annneee s 126
ALTER ROLE ... ccittieittt ettt ettt ettt e o1t e e ek et e e e s bttt e e e bt e e e nn e e e e e e e e e e annnneeean 126
GRANT @GN REVOKE ...iiiiitiiieiitte ettt ettt e sttt e e s ass et e e e s et e e e e be e e e e e anb e e e e e e nbe e e e nannnreeeane 126

GRANTED BY etttteeiittte ettt etttk ettt e e ekt e e e e b et e e e s b et e e e am b et e e e e nbn e e e e e nbe e e e e aneneeeaas 126
REVOKE ALL ON ALL 1otttiiititteeittit ettt ettt e sttt e e st e e s amsb e e e e s snbn e e e e e snne e e e annneeeaas 127
REVOKE ADMIN OPTION ..iiiiuititieiitieie e sttt e ettt e s ettt e e st e e s e s e e e s s asbee e e s anne e e e s annneeeeennes 128
THe RDBSADMIN TOIeiiiiieeiiiiiiitiii it e e e ettt e e e e e e ettt e e e e e e e s s saee e e e eaeeesaannssaeeeeaeeessannssnnneeeens 128
[N NOMMEl ABEADASES ..ottt e et r e e e e e ennes 129
IN the SECUNity AaADASEeeeie et 129
AUTO ADMIN MAPPINGeoiiiiiiiiieeaiitite ettt ettt e et e e et et e e s aabe e e e e s sbe e e e e asb e e e e e asne e e e s annnneeenan 130
[N NOIMEI ABEADASES ..ot e e st e e e e e e ennes 130
IN the SECUNity AaADASEeeieeiiit e e 131
SQL user management COMIMANGSceeeiiurrieiiiiiiee et e e e et e e s e e s b e e e sabar e e e asneeeessbreeeenan 131
CREATE USER ..iiittttie ettt etttk e sttt e ookttt e e e ekttt e e st e e e et e e e e e e e e e nnr e e e e e nnes 131

Vi

Firebird 2.5 Language Ref. Update

ALTER USER ..oiiiiittiie etttk e ekt e e skt e e 1kt e e e e et e e et e e e e e nb e e e e e annnn s 132
DIROP USER ... eiiiittite ettt ettt ettt e e e st e e ookttt e e ek e e e e e a bt e e e e e b e e e e e e b e e e e e nnre s 132

11, CONEEXE VAINTAIIES ...ttt e e e ek et e s e bt e e e e e e s anreeeenaa 133
CURRENT_CONNECTT ON ...itiiieeiiiet ettt e sttt et e et e e e s ambe et e s e st e e e ansne e e e anne e e e s annnnee s 133
CURRENT _ROLE ..ottt ettt e s et e e s e e e e e e e e e e e anreeeeaa 133
CURRENT _TI ME ettt ettt ettt e sttt e e ek et e e sttt e e as et e e e e et e e e nnae e e e annrneeeaa 134
CURRENT _TI MESTAMP ...ttt ettt ekttt e et e e e st e e e ek e e e e e s e e e e e st e e e e e annrneeeaas 134
CURRENT_TRANSAGCTT ON .t tuitttee ettt sttt e e st e e e s st e e s abbe e e e e ansae e e e e nnnne e e s annneeenan 135
CURRENT _USER ...ttt etttk e e ettt e e ek et e e e s e e e e e nnae e e e nnnnneeeaa 135
DELETT NG . ettt ettt ettt e s e e e et e ettt a s e e e e e e e ee s bba e e e aeeeeeebs s s e eaeeeeeesnnnn e aaeeaeeennnnns 136
(€ D510 B PP PUTPPP PP 136
ST = 2 3 I TP PP PPSPPPPPN 137
INEWV etttk e ek e ek e e oA et e o R R et e e oA R e e e e e e R e et e e e b b et e e e be e e e e e e e e s 137
B 1O PRSP OUPPPPON 137
(@ I L OO OPPPPTRPPPRPPN 138
ROMV COUNT .ottt ettt e ekttt e e 4ttt e 4 skt e 44 sttt e oottt e e an s e e e e e ante e e e e e nnn e e e e ennnes 139
(0 IO B PP PP PUTPRP PP 139
(0 IR N I PP P PP PP PP PPPPRP 140
UPDATT NG ettt ettt e e et ettt e et e e e e e e eet e e s e e e et eees e a e s e e aeeeeeesbba e eeaaeeennnnnnannns 141
12. Operators and PrefiCaLESccoiuirieiiiiie ettt e e e e et e e e anbr e e e e e nre e e e aar e eeeaan 142
NULL literals allOWed @S OPEIENGScoourrieeiiiiiee ettt e e 142
| (SEFING CONCBLENGLOT)uiteeeeeiete ettt ettt e e ek e e e et e e et e e e e e e b e e e e anbe e e e eanbnreeeane 142
TEXt BLOB CONCALENALTONuitiiieeiiieteeeeiteee e e et e e et e et e e s sttt e e e e e e e e e e e e e e e e s annneeas 142
Result type VARCHAR OF BLOBcciiitiiiieiitieeeeiiieeeeasitsee e e st e e s asbne e e s annneeaesanneeesssnneneenan 142
OVEITIOW CRECKING ...t e e nnrne e e e 143

A I TP PP PP PPPPPPPPPI 143
NULL [IteralS @llOWEDoeiiiiiiiiie ettt nnee e e ane 143
UNION 8S SUDSEIECTeeiiiiiiiie ettt e e e e e e s e e e 143
ANY] SOME ...ttt ettt ettt e ekt e et e e h et e e e R et e e e Rt e e e e e e e e e e nannes 143
NULL [IteralS @llOWEDoeiiiiiiiiie ettt e e e e e 143
UNION 8S SUDSEIECTeeiiiiiiiie ettt e e e e e e s e e e 143
PP UPR PR 144
NULL [IteralS @llOWEDoeeiiiiiiiie ettt e e e 144
UNION 8S SUDSEIECTeeieiiiiiie ettt e e e e e e s e e e 144

IS [NOT] DISTINCT FROM ..coiiitiitiiiittieeeatiete e ettt e e st e e s asee e e e s st e e e e asbe e e e e annbe e e e aanbee e e e anneeaeeannes 144
NEXT VALUE FOR .. .oiiiiieiitiit ettt ettt ettt e 4kttt e e ekt e o4 b e e e e e st e e s ans et e e e nnba e e e e nnneeeean 145
SIMILAR TO ittt ettt ettt e ookttt e e sttt e o4k bttt e 4o sk e et e e 4Rkt ee 2 ek et e e e e n b e e e e e nne e e e e e nn e e e e e nnnes 145
BUildiNg regular EXPIrESSIONSeiiiiiiiiieiiiiie et s b e st e e s b e e s e e e e s aneeeeeaaa 147
SOME ettt A bt o R e e et e e R e e e e oA R et e e e e R b et e e e e R et e e e nr e e e e nnrreeenas 150
13, AQQregate TUNCLIONSoeiiiiiieieeiiie ettt e et e e et e e e s b e e e s kb r e e e e nb e e e e anbn e e e e annreeeeans 151
[Y T TP PPSUPPRPON 151
Y PO TSP PP PPPRPPPPPRPPN 151
Y TN TP PSP UPP U PUPRPPRPPPRRPN 152
14, INEENEL TUNCLIONS ...ttt e et e e e st e e e e et e e e e b et e e e st e e e e e annn e e e e e 153
F = | PP P PP PPPPRPPRPPTPRP 153
F @0 S | TP PO PP PUPPRPTPPPPRP 153
ASCIH_CHAR() tttteetutttte e ettt ettt et e oottt e e sttt e ookt e o2 ek et e e e ab et e e e s b et e e e an b e e e e e e b n e e e e nreneeeaan 154
FN S | Y I OO PP PP PRPPTPPN 154
AUSIN(ettt ettt ettt e e R e £ e e oA E e e e e e R R e e e e e e AR et e e e R R e et e e e R nn e e e e nn e e e e anrnes 155
A Y L TP PP OPPPRPRPPPRP 155
FA Y N TP PO PP TPPPRPRPPPRP 156
BIN_ANDI() +ttteeeiutteteeautteee e ettt e e et e e ekttt e e e et e e e e aa e e e o4 s et e a4 e R R et e e e R b e et e e e e e e e e R bt e e e b e e e e e e e an 156

Vii

Firebird 2.5 Language Ref. Update

BIN_OR() v.vvevveeeeeeeseeeeesesesesesesesesesesesesesesesesesasesesesesesasesesesesesesesesesesesesesesasesesssesasasasesesssesesseasaeas 157
BIN_SHL() +eevereeereeesesesesesessesesesessesesss st st s st s s s st s st s s s st s s s s s s s s s s s s s s enenenenenennans 157
NS L0 SRR 157
BIN_XOR() v.vvvveeeeeeeesesesseesssesesesesssesesesssesesesesesssesesesssesesssesesesseesesesesesesenesesesesenenenenenenenenen s nanan 158
BIT _LENGTH() «vvevveeeeeeeeeeeeeeeeeseeseeessesssssesesesesssesesesssssesesesesesesesesesesesesesesesssesasasesesesesesesesesesasanas 158
(7= 0 OO 159
CEIL(), CEILING() «eevereeererrsseseseseseseseseseseses s s s esesss s s s s s s s s s s s s s s s s s s esesenenenenenenenenenenans 162
CHAR_LENGTH(), CHARACTER _LENGTH() ...vvvevieeeeeeeeeeeetseeeeesteeeeseseeeseeeeseseeseseteeeeseesaseseseeesanans 162
(o1 n 7Y =3 £ YU LU oY T 163
COALESCE() v.vuvveeteeeeeeeeeeeeeeeeseseseeesessseesesessssseseseseseseseseseseeesesesesesesasesesesesasesetasesesasesesasesesaeesaens 164
(010 1=) N 164
(101 3 0 NPT 165
(o101 | N 165
DATEADD() o.vveeeeeeeteeeeeeeeeeeeseseeeeeseeeseseeeeeeeseeseseeeseseseseseseseseseseseeeseteseteseseseseseseseteteteteseeeteseeatanas 165
DATEDIFF() ovteeeeeeeeeeeeeeeeeeeeeeeseseseseseseseeseeeseseesssseses et eseseseseseseseseseses et eeeseseseseseseseseseseseteseeeseseeaeanas 166
(3]0 0] =) N 167
EXP() vuvveeeeeeeeeeteeeeeteteesteteteee e et eeesete e et et et etet et et et et et et et et ee eterane 168
EXTRACT() +.veeeeeeeeeeeeeee et et ete s et ee et eeee et et et et et et et et et et et et e et et e st et et et es s ee et et et et et et et et et et s et esenesesenesenenaes 168

MILLISECOND ...ttt eeeeeeeeeeeeeeeeeeeeese e eee e e s e seseseseseseseseses et et eseseseseseseseeeteseseseeeseeeeaeas 169

WEEK .ottt ettt ettt ettt ettt ettt e ettt s et et et ettt et et es et et en ettt et ettt et ettt en et ettt en et enenenenenenans 170
=T TP 170
GEN_ID() +eveeeeeeeeee et ee e et et et e et et e et et e e st eeee et ee et e et et et et et es st es s et et et et et et eeee et et et et s sttt en et et s en e enenans 170
et ULV oY R 171
HASH() vttt ettt ettt et ettt et ettt et ettt et et e et et et ettt et ettt ettt et et et ettt ee et ettt ettt ettt et et et en e enenns 171
L= NPT 172
1= = OO 172
T NP 173
(101 PP 173
(10310 OO 174
LOWER() +.vvveteeeeeeeeeeeesesesesesesesesesesesesessseseee et esesssesesssseeesseseseseseseseseseseseseseeeteseseteseeeseeeeeseeeseseeeeens 174
107N o OO 175
MAXVALUE() vttt tste et te et et ee s et etaseteseseteseteseseseteseteseseseseseseseseseseteseseseseeasanas 176
IMINVALUE(oottt ettt ee et ettt e et e ettt s et et s et s s s st en et s s s s st es s s en s en et en s s s en s s en s s s enenenans 176
IMOD() v vveeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeseees et esee et eseseseseseseseseseses et et et et etes et et et et eeetetesetesetet et et et etesereeatens 177
NULLIF() ©vteteteeetseeeeesesesese et eeseseessesesesesssesssessesssesesesssesssssssssesesesesseeseseseseseeeseseseseseseseseseseseseseeesens 177
OCTET_LENGTH() v.vveveveteteteteteeeeeeesesetetesssesssssesesssesesesasssssssssssssssssesasesssssssesssssssssesssssssssssssssasanns 178
(oY= 21N 7 NP 178
PL() e verereereeeeseeseeeeeeeeseeeeee e e s e st eeeee e e et ee e e et e e e et ee e et e e et ettt e e et et e et e s et et ee ettt ee e er e 180
POSITION() vevevveeeeeeeeees e te et et eese et eeee st e e e e ee et s e se et eeee e st et et e s et e e et sess et et et et se st st et es et ss st eeeseseseeseesneeesees 180
POWER() .. eeteteteteseseseseseseseseseseseseseseseses st s s sesesesesesesesas s s s s s s s s s s s s s s s s s s ennennennnennnas 181
2T N o7 T 181
RDBSGET _CONTEXT() vovuvevveeeeeeeesestsesesesesesesesesessstsssesssssesssesssssssssesesesssssssesssssssssssesssssessessessanas 182
RDBSSET _CONTEXT() +.vovvvvieeeeeeeeesesesesssesesesssssssesssssssesssssssesssssesssesesssesesssesssssssenssesesssenenenennenes 183
REPLACE() v.vvveteteteteteteteeetetsteteteteeseeeesateseseteseseseseessesneens 184
REVERSE() ...vvvvevetetetetetsestesseesetesesssesesssesesssesesesesessseeesneens 185
2Tt 0 OO 185
ROUND() +.vvveeeeeeeeeeeeesesesesssesesesesesesesessseseseesessssseseesseseeeseeeseseseseseseseseseseseseteseseseseesseeeseeeeeseseensees 186
2N o OO 187
SIGN() +evreveeeeeeeeeeeeeseeseeeeeeseeseeseeeeseseee et eee e e s e s eeeee e e et et ee et e st et et ee e e s st e s ettt eer s eree 188
SINQ) +vvvereeeeerereeseee s eeeeeeeseeeeee e s eeees e e s e e es e ee e et eeeee et et et e ettt e et e et e et et ee ettt eree 188
SINH() vevveeeeee ettt ettt et ettt et et et ettt e e et et e e et et et e e et et et et et et et et et et et et et et et et ettt et et et et et et ettt ettt ettt ee e 189
SORT() +vrveeeereeeesseeseeseeseeseeeeeeseeseessee s e s eseeseee e et eseeseee e et eseeeeee e es et et eee et eeseeseeeeees e s s eeeeeeeeenee 189

viii

Firebird 2.5 Language Ref. Update

SUBSTRING() +.uvveuveeuteitieeteeteeseeeteesteaseeeteessesseeaseassesseesssassesssesseessesssesseessesseeseassesseessesnsesseeaseaneeas 190
TAN() ceteetee ettt ettt ettt e et e et e et e et e et e e aeeeae e teeateebe e teeateeheeteeateabeebeenteataeabeenteeraeateenteeaeeareenteereenns 191
TANH() «teetteete ettt ettt et ettt et e et e e et e eateete et e eaeeeaeeteeseeebeeateeaeeebeeateeaeeateenteeaeeebeenteeaeeteenteeaeeteeneeans 191
TRIMU() +tvettteete et et eete et e ete et e et e eae e te e st e eteebeeseeebeeteeseeesseseeseeessenbeensesssesseenseessenbeansesreenseanseaseeneeas 191
TRUNGC() +.vveteeteeteeete et et e ete e eteeete et e eteeebeesteeaeeateesseeae e teeseeebeesseesseaaeesteeseesbeensesaseaseenseeseesreeneenns 192
UPPER() +.uvtetteiteeteetteeteeeteesteeteeeteeateeteeeteesseebeeeseeaseeaeeeseesseeseeebeenseeaseateesteesseabeentesaeeateenteeaeeareenee e 193
UUID_TO _CHAR() +eeuteeuteiteeeteete et e ete e e eteeeteeateeteeete e st e steeateeseeeteeteesseesaesseeseeeseenbeaseeaseensesseesreensenns 194
15. External fUNCLIONS (UDFS)ooiiiiiiieeiiiie ettt e e e e e 195
= o 1 195
= Lo o 1 195
= o o |57 PP 196
= Lo [0 | 11 1 196
F= Lo [o 11N I RS TSY o2 o] o [N 197
= Lo [0 1Y I 0 = 197
F= Lo [0 1Y, 0 o | S o 198
F= Lo [0 IS TST o2 o] o [198
F= L0 [0 ALY 198
= Lo [0 I =T | 199
ASCI I _Char 199
=Y ol I V2> Y TR 200
= LY I 201
= L= 1 1 1 201
= L= 1 2 202
0TI 0 T = U U TR 202
oY1 o T | SRR 203
0TI 0 T 01 PPN 203
LI | T Mg oo 203
oo 1N 204
(o7 0 1] o 204
oo) N 205
o [0 111V 205
[0 0T 0 1Y R 206
0 Yo 1 206
OET EXACT Ti IMEST @ITP it 207
IS o 1 U o o 207
ST A U (= X 207
0 o T 207
L O e 208
L OGL0 e 208
10 1. 209
I = T T 210
O T 0 211
110 1T 212
S 101 I T T 212
Lol 0 1V 213
o RSP 214
L= o R 214
F T Gt 215
(0T 1 o I I S 7 o 10 o o T 215
0 = Lo T 216
T T 2 217
LYo [0 1117 218

Firebird 2.5 Language Ref. Update

LY o | o TR 218

LY 1 TP PP PP PURRPTPPIN 219

SI NN 219

LY o | g ST PP 220

LY =1 0 o E PP PP P RTTPPPTPPPPRPPRPPINE 220

LS 1 | 0 R 220

L3 A ST Yo 122 o I o] TP 221

LS S = o R 221

LS 011 A 222
SUD S T L BN e 223

L= TP TP URRPPPPIN 224

L AN 224
ETUNCAL €, 1 BAL T UNCAL © .oiieeeiiii et e et e et e e st e e s e s et e e e e e e b e s ab e e raneeernss 225
APPENAIX AL INOLES ...ttt e et e e e et e e e e b et e e e e s b et e e e nb e e e e e b n e e e e e e e nnes 227
Character set NONE data aCCEPIEA “@S IS” ...vviieiiiiiieeiiiiie ettt 227
Understanding the WITH LOCK ClAUSEcociiuriiieiiiiee et 228
Syntax and DENEVIOUNueiiiiiii e 228

How the engine dealS With WITH LOCKcciiiiiiiiiiiiiee ettt 229

The optional “OF <col uM- NaMeS>" SUD-ClAUSEcuvviiiiiiiie e 230

CaveatS USING WITH LOCKuiiiiiiiiiiieeeiieie ettt e st e s et e et e e e e e s e st e e e s annn e e e e annnneeas 230

Examples using eXpliCit I0CKINGuviieiiiiiie e 230

A NOte 0N CSTRING PAIAMELENSeeverereiererererererererererererere e e rerererererersrennrnnnns 230
Passing NULL t0 UDFS iN FIrehird 2coooiiiiiiiiiiei et 231
“Upgrading” i b_udf functionsin an existing databasecccceeviiiiiiiiiiiiic e 232
Maximum number of indices in different Firebird VErSIONSccceeeiiiiiiieiiiiieceeee e 232

The RDBSVALID BLR fi€ld oo 233
Appendix B: Reserved words and Keywords — fUll TiSIScocuiiiiiiiiiiii e 234
RESEIVEA WOITS ...ttt ettt e et e e ek e e e e et e e e e e e e e e nnne e e e aannes 234
KIBYWOITS ..ttt e ekt e e e et e e ekttt e e et e e e e e e e e e e anb e e e e e nnneee s 237
AppendixX C: DOCUMENT HISIOTYveiiiiiiiiieie ettt e e e e e e e e e e nnneees 245
APPENAIX D: LICENSE NOLICEeeiiiiiieiee etttk e e et e e e e as e e e e e s b e e e e e aabe e e e e s nnnr e e e e ennees 251

List of Tables

5.1. Character SEtS NEW iN FIFEDINGooiiiiiiiiiiiiie et e e e snba e e e s aneee s 21
5.2. Collations NEW iN FIFEDINTeeiiiiiiiiee it e et e e st e e e s sabb e e e s enaaneeeen 23
6.1. SPecCific COllation GLITDULESueiiiiie e e e e e e e e e s s ear b bae e e e e e e e eanes 26
6.2. Maximum indexable (VAR)CHAR IENGLN ... e 37
6.3. Max. indices per table, FIrebird 2.0oooiiiiiiiiiie e 37
7.1. NULLs placement in ordered COIUMNScoooeiiiiiiiiiiiiee et e e e e s ee e e e e e s e e aneees 20
12.1. Comparison of [NOT] DISTINCT 10 “=" and “<>" ... e e 145
I 0 1SS o L= @7 N IR 160
14.2. Types and ranges Of EXTRACT FESUILSceiieiiiiiiiiiiiieee e e e sttt e e e e es st e e e e e e e s saarrrae e e e e e e s e nnnees 169
14.3. Context variables in the SYSTEM NAMESPACEc..occuvviiiiiieeee ittt eee e e e e e e seiiaaee e e e e e e s e snnaraeeeeeas 182
A.1l. How TPB settings affect expliCit I0CKINGvvieiiieeiiiiiiieiie e 228
A.2. Max. indices per table in Firebird 1.0 — 2.0 ... 232

Xi

Chapter 1

Introduction

Subject matter

What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.5.1.
It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» Transaction control statements

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Security and access control statements

» Context variables

» Operators and predicates

» Aggregate functions

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.5 SQL reference, you need:

* ThelnterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht i)
» Thisdocument

Non-SQL topics are not discussed in this document. These include:

* ODSversions

» Buglistings

 Instalation and configuration

» Upgrade, migration and compatibility
» Server architectures

* AP functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other
documentation viathe Firebird Documentation Index at http://www.firebirdsgl.org/en/documentation/.

Versions covered

This document covers al Firebird versions up to and including 2.5.1.

http://www.firebirdsql.org/en/documentation/

Introduction

Authorship

Most of this document was written by the main author. The remainder (2-3%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included materia are:

* J Beedey

* Helen Borrie

e Arno Brinkman

* Frank Ingermann

e Vlad Khorsun

* Alex Peshkov

* Nickolay Samofatov

» Adriano dos Santos Fernandes
* Dmitry Yemanov

Acknowledgments

Vlad Khorsun, Adriano dos Santos Fernandesand Dmitry Y emanov have been very helpful and patient whenever
I had questions about the details of various new Firebird features. The email conversations | had with them have
made this a better work of reference. Thank you, guys!

Chapter 2

New in Firebird 2.5

For users upgrading from Firebird 2.1, this chapter liststhe SQL additions and changesin Firebird 2.5and 2.5.1,
with links to the corresponding sections. If you come from an earlier version or are new to Firebird, you may
want to skip this chapter.

Reserved words and keywords

Changed since Firebird 2.1:

Newly reserved words: SIMILAR, SQLSTATE (2.5.1).

New non-reserved keywords: AUTONOMOUS, BIN_NOT, CALLER, CHAR_TO_UUID, COMMON, DATA,
FIRSTNAME, GRANTED, LASTNAME, MAPPING, MIDDLENAME, OS NAME, SOURCE, TWO_PHASE and
UUID_TO_CHAR.

No longer reserved, but still keywords: ACTIVE, AFTER, ASC, ASCENDING, AUTO, BEFORE, COLLATION,
COMMITTED, COMPUTED, CONDITIONAL, CONTAINING, CSTRING, DATABASE, DESC, DESCENDING,
DESCRIPTOR, DO, DOMAIN, ENTRY_POINT, EXCEPTION, EXIT, FILE, GEN_ID, GENERATOR,
IF, INACTIVE, INPUT_TYPE, ISOLATION, KEY, LENGTH, LEVEL, MANUAL, MODULE_NAME,
NAMES, OPTION, OUTPUT_TYPE, OVERFLOW, PAGE, PAGE_SIZE, PAGES, PASSWORD, PRIVILEGES,
PROTECTED, READ, RESERV, RESERVING, RETAIN, SCHEMA, SEGMENT, SHADOW, SHARED,
SINGULAR, SIZE, SNAPSHOT, SORT, STABILITY, STARTING, STARTS, STATEMENT, STATISTICS,
SUB_TYPE, SUSPEND, TRANSACTION, UNCOMMITTED, WAIT, WORK and WRITE.

No longer reserved and not keywords. AUTODDL, BASE NAME, BASED, BLOBEDIT, BUFFER,
CHECK_POINT_LENGTH, COMPILETIME, CONTINUE, DB_KEY, DEBUG, DESCRIBE, DISPLAY, ECHO,
EDIT, EVENT, EXTERN, FOUND, GOTO, GROUP_COMMIT_, HELP, IMMEDIATE, INDICATOR, INIT, INPUT,
ISQL, LC_MESSAGES, LC _TYPE, LEV, LOG_BUFFER_SIZE, MAX_SEGMENT, MAXIMUM, MESSAGE,
MINIMUM, NOAUTO, NUM_LOG BUFFERS, OUTPUT, PAGELENGTH, PREPARE, PUBLIC, QUIT,
RETURN, RUNTIME, SHELL, SHOW, SQLERROR, SQLWARNING, STATIC, TERMINATOR, TRANSLATE,
TRANSLATION, VERSION, WAIT_TIME and WHENEVER.

Miscellany

Changed since Firebird 2.1:

Hexadecimal notation for numerals
Hexadecimal notation for “binary” strings

Data types and subtypes

Changed since Firebird 2.1:

New in Firebird 2.5

* SQL_NULL datatype
» (GB18030 character set, WIN_1258 alias
* UNICODE_CI_Al collation for UTF8, GB18030 collation for GB18030

Data Definition Language (DDL)

Changed since Firebird 2.1:

* ALTER CHARACTER SET (set default collation for charset)

* NUMERIC-SORT attribute for Unicode collations

» Default collation for the database

» Classic Server: Altered procedure immediately visible to other clients
* ALTER COLUMN also for generated (computed) columns

e ALTERCOLUMN ... TYPE no longer failsif column is used in trigger or SP
» Views can select from stored procedures

» Views can infer column names from derived tables or GROUPBY

e Column list for UNION-based views no longer mandatory

* ALTERVIEW

e CREATEORALTERVIEW

Data Manipulation Language (DML)

Changed since Firebird 2.1:

» UPDATE statement: changed SET semantics

PSQL statements

Changed since Firebird 2.1:

e TYPE OF COLUMN in variable and parameter declarations
e EXECUTE STATEMENT:
- Improved performance
- WITH { AUTONOMOUS|COMMON} TRANSACTION
- WITH CALLER PRIVILEGES
- ON EXTERNAL [DATA SOURCE]
- ASUSER, PASSWORD and ROLE
- Parameterized statements
* INAUTONOMOUSTRANSACTION
» Subqueries as PSQL expressions

Security and access control

Changed since Firebird 2.1:

New in Firebird 2.5

* ALTERROLE

* GRANTED BY clause

* REVOKEALL ONALL

* The RDB$ADMIN role

* AUTOADMIN MAPPING

» SQL user management commands:
- CREATEUSER
- ALTERUSER
- DROPUSER

Context variables

Changed since Firebird 2.1:

» SQLCODE deprecated (2.5.1)
* SQLSTATE context variable (2.5.1)

Operators and predicates

Changed since Firebird 2.1.

* SIMILAR TO: Regular expressions

Aggregate functions

Changed since Firebird 2.1:

e LIST() separator may be any string expression

Internal functions

Changed since Firebird 2.1:

* CAST() as TYPE OF COLUMN

» DATEADD: New unit WEEK. Sub-DAY units allowed with DATES.
» DATEDIFF: New unit WEEK. Sub-DAY units allowed with DATES.
* CHAR_TO_UUID()

* LOG() behaviour improved

* LOG10() behaviour improved

* LPAD() now returns VARCHAR of exact end length

* RPAD() now returns VARCHAR of exact end length

e UUID_TO_CHAR()

Chapter 3

Reserved words and keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

The following sections present the changes since InterBase 6. Full listings of Firebird 2.5 reserved words and
keywords can be found in the Appendix.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT
BIT_LENGTH

BOTH

CASE

CLOSE

CONNECT

CROSS
CURRENT_CONNECTION
CURRENT _ROLE
CURRENT_TRANSACTION
CURRENT_USER
DISCONNECT
FETCH

GLOBAL
INSENSITIVE
LEADING

LOWER

OPEN

RECREATE
RECURSIVE
ROW_COUNT
ROWS

SAVEPOINT
SENSITIVE
SIMILAR

SQLSTATE (2.5.1)
START

Reserved words and keywords

TRAILING
TRIM

New non-reserved keywords

The following words have been added to Firebird as non-reserved keywords. More than half of them are names
of internal functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCIl_CHAR
ASCIl_VAL
ASIN

ATAN
ATAN2
AUTONOMOUS
BACKUP
BIN_AND
BIN_OR
BIN_NOT
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK
BREAK
CALLER
CEIL
CEILING
CHAR_TO_UUID
COALESCE
COLLATION
COMMENT
COMMON
cos

COSH

coT

DATA
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP

FIRST
FIRSTNAME
FLOOR
GEN_UUID
GENERATED
GRANTED
HASH

Reserved words and keywords

IF
INSERTING
LAST
LASTNAME
LEAVE
LIST

LN

LOCK

LOG

LOG10
LPAD
MAPPING
MATCHED
MATCHING
MAXVALUE
MIDDLENAME
MILLISECOND
MINVALUE
MOD

NEXT
NULLIF
NULLS
0S_NAME
OVERLAY
PAD

Pl

PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR_ARRAY
SEQUENCE
SIGN

SIN

SINH

SKIP
SOURCE
SPACE
SQRT
SUBSTRING
TAN

TANH
TEMPORARY
TRUNC
TWO_PHASE
WEEK

Reserved words and keywords

UPDATING
UUID_TO_CHAR

Dropped since InterBase 6

No longer reserved, still keywords

The following words are no longer reserved in Firebird 2.5, but are still recognized as keywords:

ACTION
ACTIVE
AFTER

ASC
ASCENDING
AUTO
BEFORE
CASCADE
COLLATION
COMMITTED
COMPUTED
CONDITIONAL
CONTAINING
CSTRING
DATABASE
DESC
DESCENDING
DESCRIPTOR
DO

DOMAIN
ENTRY_POINT
EXCEPTION
EXIT

FILE

FREE IT
GEN_ID
GENERATOR
1=

INACTIVE
INPUT_TYPE
ISOLATION
KEY

LENGTH
LEVEL
MANUAL
MODULE_NAME
NAMES
OPTION
OUTPUT_TYPE
OVERFLOW
PAGE

Reserved words and keywords

PAGE_SIZE
PAGES
PASSWORD
PRIVILEGES
PROTECTED
READ
RESERV
RESERVING
RESTRICT
RETAIN
ROLE
SCHEMA
SEGMENT
SHADOW
SHARED
SINGULAR
SIZE
SNAPSHOT
SORT
STABILITY
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUSPEND
TRANSACTION
TYPE
UNCOMMITTED
WAIT
WEEKDAY
WORK
WRITE
YEARDAY

No longer reserved, not keywords

The following words are no longer reserved in Firebird 2.5, and not keywords either:

AUTODDL
BASE_NAME

BASED

BASENAME
BLOBEDIT

BUFFER

CACHE
CHECK_POINT_LEN
CHECK_POINT_LENGTH
COMPILETIME
CONTINUE

DB_KEY

DEBUG

10

Reserved words and keywords

DESCRIBE
DISPLAY

ECHO

EDIT

EVENT

EXTERN

FOUND

GOTO
GROUP_COMMIT_
GROUP_COMMIT_WAIT
HELP
IMMEDIATE
INDICATOR

INIT

INPUT

1SQL
LC_MESSAGES
LC_TYPE

LEV

LOG_BUF SIZE
LOG_BUFFER_SIZE
LOGFILE
MAX_SEGMENT
MAXIMUM
MESSAGE
MINIMUM
NOAUTO
NUM_LOG_BUFFERS
NUM_LOG_BUFS
OUTPUT
PAGELENGTH
PREPARE

PUBLIC

QUIT
RAW_PARTITIONS
RETURN

RUNTIME

SHELL

SHOW

SQLERROR
SQLWARNING
STATIC
TERMINATOR
TRANSLATE
TRANSLATION
VERSION
WAIT_TIME
WHENEVER

Some of these words still have a special meaning in ESQL and/or 1SQL.

11

Reserved words and keywords

Possibly reserved in future versions

Thefollowing words are not reserved in Firebird 2.5, but are better avoided asidentifiers because they will likely
be reserved — or added as keywords —in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

12

Chapter 4

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - ” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:
- atable to store our valued custoners in:
create table Custoners (
nane var char (32),
added_by varchar (24),
custno varchar(8),
pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Hexadecimal notation for numerals
Availablein: DSQL, PSQL
Added in: 2.5

Description: In Firebird 2.5 and up, integer values can be entered in hexadecimal notation. Numbers with 1-8
hex digits will be interpreted as INTEGERS, humbers with 9-16 hex digits as BIGINTS.

Syntax:
0{ x| X} <hexdi gi t s>

<hexdigits> ::= 1-16 of <hexdigit>

13

Miscellaneous language elements

<hexdi gi t > ::= one of 0..9, A.F, a..f
Examples:
sel ect 0x6FAAOD3 from rdb$dat abase -- returns 117088467
sel ect 0x4F9 from rdb$dat abase -- returns 1273
sel ect 0x6E44F9A8 from rdb$dat abase -- returns 1850014120
sel ect Ox9E44F9A8 from rdb$dat abase -- returns -1639646808 (an | NTEGER)
sel ect Ox09E44F9A8 from r db$dat abase -- returns 2655320488 (a BIG NT)
sel ect 0x28ED678A4C987 from rdb$dat abase -- returns 720001751632263
sel ect OxFFFFFFFFFFFFFFFF from r db$dat abase -- returns -1
Value ranges:

» Hex numbersin the range 0 .. 7FFF FFFF are positive INTEGERs with values between O .. 2147483647
decimal. Y ou can force them to BIGINT by prepending enough zeroes to bring the total number of hex digits
to nine or above, but that only changes their type, not their value.

* Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

- When written with eight hex digits, asin OXx9E44F9A8, they are interpreted as 32-bit INTEGER values.
Since their leftmost bit (sign bit) is set, they map to the negative range -2147483648 .. -1 decimal.

- With one or more zeroes prepended, asin OX09E44F9A8, they are interpreted as 64-bit BIGINTs in the
range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit isn't set now, so they map to the
positive range 2147483648 .. 4294967295 decimal.

Thus, in thisrange — and in this range only — prepending a mathematically insignificant O results in atotally
different value. Thisis something to be aware of.

» Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINTS.

» Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINTS.

Hexadecimal notation for “binary” strings

Availablein: DSQL, PSQL
Added in: 2.5

Description: In Firebird 2.5 and up, string literals can be entered in hexadecimal notation. Each pair of hex digits
defines a byte in the string. Strings entered this way will have character set OCTETS by default, but you can
force the engine to interpret them otherwise with the introducer syntax.

Syntax:
{x| X}' <hexstring>

<hexstri ng>
<hexdi gi t >

= an even nunber of <hexdigit>
= one of 0..9, A.F, a..f

Examples:

sel ect x' 4E657276656E from rdb$dat abase

14

Miscellaneous language elements

-- returns 4E657276656E, a 6-byte 'binary' string

sel ect _ascii x'4E657276656E from rdb$dat abase
-- returns 'Nerven' (sane string, nowinterpreted as ASCI| text)

sel ect _is08859 1 x'53E46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 4 bytes)

sel ect _utf8 x'53C3A46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 5 bytes)

Notes:

» Itisuptotheclient interface how binary strings are displayed to the user. Isgl, for one, uses uppercase letters
A-F. FlameRobin uses lowercase |etters. Other client programs may have other ideas, e.g. like this, with
spaces between the bytes: '4E 65 72 76 65 6E'.

» The hexadecimal notation allows you to insert any byte value (including 00) at any place in the string.
However, if you want to coerce it to anything other than OCTETS, it is your responsibility that the byte
sequenceisvalid for the target character set.

Shorthand datetime casts

Availablein: DSQL, ESQL, PSQL
Added in: 1B

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird alows the use of a
shorthand “ C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

dat atype 'date/tinmestring
Examples:

updat e Peopl e set AgeCat = 'Ad’
where BirthDate < date '1-Jan-1943

insert into Appointnents

(Enpl oyee_Id, dient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, tinme '16:00")

new. | astnod = tinestanp ' now ;
Note: Please be advised that these shorthand expressions are evaluated immediately at parse time and stay the
same as long as the statement remains prepared. Thus, even if a query is executed multiple times, the value for

e.g. “timestamp 'now™ won't change, no matter how much time passes. If you need the value to progress (i.e.
be evaluated upon every call), use afull cast.

See also; CAST

15

Miscellaneous language elements

CASE construct

Availablein: DSQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

» Thesimple CASE, comparable to aPascal case oraCswi t ch.
e Thesearched CASE, which workslikeaseriesof “if ... else if ... else if” clauses

Simple CASE
Syntax:

CASE <t est - expr >
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

Whenthisvariantisused, <t est - expr >iscomparedto<expr > 1, <expr > 2 etc., until amatchisfound, upon
which the corresponding result is returned. If there is no match and thereis an ELSE clause, def aul t r esul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

The match is determined with the “=" operator, so if <t est-expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the simple CASE construct is the DECODE() function, available since Firebird 2.1.
Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Ml e’
when 'F' then ' Fenal €'
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE

16

Miscellaneous language elements

WHEN <bool _expr> THEN result
[WHEN <bool _expr> THEN result ...]
[ELSE defaul tresult]

END

Here, the <bool _expr >s are tests that give a ternary boolean result: TRUE, FALSE, or NULL. The first
expression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause,
def aul t resul t isreturned. If no expression is TRUE and there isno ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

17

Chapter 5

Data types and subtypes

BIGINT data type

Addedin: 1.5
Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailable in Dialect 3 only.
BIGINT numbers range from -2%% .. 253-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Since Firebird 2.5, BIGINT numbers may be entered in hexadecimal form, with 9-16 hex digits. Shorter hex
numerals are interpreted as INTEGERS.

Examples:
create tabl e Wol eLott aRecords (
id bigint not null primary key,

description varchar (32)

)

insert into MyBigints val ues (

- 236453287458723,

328832607832,

22,

-56786237632476,

Ox6F55A09D42, -- 478177959234
OX7FFFFFFFFFFFFFFF, -- 9223372036854775807
Oxffffffffffffffff, -- -1

0x80000000, -- -2147483648, an | NTEGER
0x080000000, -- 2147483648, a BIGNT
OXFFFFFFFF, -- -1, an I NTEGER
OXOFFFFFFFF -- 4294967295, a BIGNT

)

The hexadecimal INTEGERSs in the second example will be automatically cast to BIGINT before
insertion into the table. However, this happens after the numerical value has been established, so
0x80000000 (8 digits) and 0x080000000 (9 digits) will be stored as different values. For more
information on this difference, see Hexadecimal notation for numerals, in particular the paragraph
Value ranges.

BLOB data type

Text BLOB support in functions and operators
Changedin: 2.1,2.1.5,25.1

18

Data types and subtypes

Description: Text BLOBs of any length and character set (including multi-byte sets) are now supported by
practically every internal text function and operator. In afew cases there are limitations or bugs.

Level of support:

» Full support for:

- = (assignment);

- =, <>, <, <=, >, >= and synonyms (comparison);

- || (concatenation);

- BETWEEN, IS[NOT] DISTINCT FROM, IN, ANY|SOME and ALL.

» Support for STARTING [WITH], LIKE and CONTAINING:

- Inversions 2.1-2.1.4 and 2.5, an error is raised if the second operand is 32 KB or longer, or if the first
operand isaBLOB with character set NONE and the second operand isaBLOB of any length and character
Set.

- Inversions 2.5.1 and up (aswell as 2.1.5 and up in the 2.1 branch), each operand can be a BLOB of any
length and character set.

* SELECT DISTINCT, ORDER BY and GROUPBY work on the BLOB ID, not the contents. This makes them as
good as useless, except that SELECT DISTINCT weeds out multiple NULLS, if present. GROUP BY behaves
oddly in that it groups together equal rowsiif they are adjacent, but not if they are apart.

* Anyissueswith BLOBsininternal functionsand aggregate functionsare discussed in their respective sections.

Various enhancements

Changedin: 2.0

Description: In Firebird 2.0, several enhancements have been implemented for text BLOBS:
DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning a BLOB to a BLOB or a string to aBLOB.
When defining binary BLOBS, the mnemonic bi nar y can now be used instead of the integer O.

Examples:

sel ect NaneBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

create table MyPictures (
idint not null primary key,
title varchar(40),
descri ption varchar (200),
pi cture bl ob sub_type binary

)

SQL_NULL data type

Added in: 2.5

19

Data types and subtypes

Description: The SQL_NULL data type is of little or no interest to end users. It can hold no data, only a state:
NULL or NOT NULL. Itisalso hot possibleto declare columns, variablesor PSQL parameters of type SQL_NULL.
At present, itsonly purpose isto support the“? ISNULL” syntax in SQL statements with positional parameters.
Application developers can make use of this when constructing queries that contain one or more optional filter
terms.

Syntax: If astatement containing the following predicate is prepared:

? <op> NULL

Firebird will describe the parameter ('?) as being of type SQL_NULL. <op> can be any comparison operator,
but the only one that makes sensein practiceis“1S” (and possibly, in some rare cases, “NOT 1S").

Rationale

Initself, having a query with a “WHERE ? ISNULL” clause doesn't make a lot of sense. You could use such a
parameter as an on/off switch, but that hardly warrantsinventing awhole new datatype. After all, such switches
can a'so be constructed with a CHAR, SMALLINT or other parameter type. The reason for adding the SQL_NULL
typeisthat developers of applications, connectivity toolsets, drivers etc. want to be able to support queries with
optiona filterslike these:

sel ect nake, nodel, weight, price, in_stock from autonobiles
where (nmake = :nmake or :make is null)
and (nodel = :nodel or :nodel is null)
and (price <= :naxprice or :maxprice is null)

Theideaisthat the end user can optionally enter choicesfor the parameters: make, : nodel and: maxpri ce.
Wherever a choice is entered, the corresponding filter should be applied. Wherever a parameter is left unset
(NULL), there should be no filtering on that attribute. If all are unset, the entire table AUTOMOBILES should
be shown.

Unfortunately, named parameterslike: make and: nodel only exist on the application level. Before the query
is passed to Firebird for preparation, it must be converted to this form:

sel ect make, nodel, weight, price, in_stock from autonobiles
where (make = ? or ? is null)
and (nmodel = ? or ? is null)
and (price <= ? or ? is null)

Instead of three named parameters, each occurring twice, we now have six positional parameters. There is no
way that Firebird can tell whether some of them actually refer to the same application-level variable. (The fact
that, in this example, they happen to be within the same pair of parentheses doesn't mean anything.) Thisin
turn means that Firebird also cannot determine the data type of the “? is null” parameters. This last problem
could be solved by casting:

sel ect nmake, nodel, weight, price, in_stock from autonobiles
where (nake = ? or cast(? as type of colum autonobiles. make) is null)
and (nodel = ? or cast(? as type of columm autonobiles.nodel) is null)
and (price <= ? or cast(? as type of colum autonobiles.price) is null)

...but this is rather cumbersome. And there is another issue: wherever afilter term is not NULL, its value will
be passed twice to the server: once in the parameter that is compared against the table column, and once in the
parameter that istested for NULL. Thisisabit of awaste. But the only alternative isto set up no less then eight

20

Data types and subtypes

separate queries (2 to the power of the number of optional filters), which is even more of a headache. Hence the
decision to implement a dedicated SQL_NULL data type.

Use in practice

Notice: The following discussion assumes familiarity with the Firebird APl and the passing of parametersvia
XSQLVAR structures. Readers without this knowledge won't have to deal with the SQL_NULL data type anyway
and can skip this section.

Asusual, the application passes the parameterized query in ?-form to the server. It is not possible to merge pairs
of “identical” parametersinto one. So, for e.g. two optional filters, four positional parameters are needed:

sel ect size, colour, price fromshirts
where (size ?2 or ?2is null)
and (col our ? or ?2is null)

After thecall toi sc_dsql _descri be_bi nd(), thesql t ype of the 2nd and 4th parameter will be set to
SQL_NULL. As said, Firebird has no knowledge of their special relation with the 1st and 3d parameter — thisis
entirely the responsibility of the programmer. Once the values for size and colour have been set (or left unset)
by the user and the query is about to be executed, each pair of XSQLVARs must be filled as follows:

User hasfilled in a value
» First parameter (value compare): set* sql dat a tothesuppliedvalueand* sql i nd to O (for NOT NULL);
» Second parameter (NULL test): set sql dat a to null (null pointer, not SQL NULL) and *sql i nd to O
(for NOT NULL).

User has left the field blank
» Both parameters: set sqgl dat a to null (null pointer, not SQL NULL) and *sql i nd to -1 (indicating
NULL).

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set the same,
except that sql dat a remains null at all times.

New character sets

Addedin: 1.0, 1.5,2.0, 2.1, 25

The following table lists the character sets added in Firebird.

Table5.1. Character setsnew in Firebird

Name Max bytes/ch. L anguages Added in
CP943C 2 Japanese 21
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 =DOS850 plus€ sign 15
DOS862 1 Hebrew 15

21

Data types and subtypes

Name Max bytes/ch. L anguages Added in
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
GB18030 4 Chinese 25
GBK 2 Chinese 21
1SO8859 2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1S08859 5 1 Cyrillic 1.5
1SO8859_6 1 Arabic 15
1SO8859 7 1 Greek 15
1SO8859 8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
T1S620 1 Thai 21
uTF8 4 All 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Vietnamese 20
WIN_1258 (aias for WIN1258) 1 Vietnamese 25

OlIn Firebird 1.5, UTF8isan alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
inits own right, without the drawbacks of UNICODE_FSS.

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trangdliteration errors. For more details, see the Note at
the end of the book.

22

Data types and subtypes

New collations

Addedin: 1.0,1.5,15.1,2.0,21,25

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported in the Release Notes and other documents. The information in this column is probably incomplete;
some collationswith an empty Detailsfield may still be caseinsensitive (ci), accent insensitive (ai) or dictionary-

sorted (dic).

Please note that the default — binary — collations for new character sets are not listed here, as doing so would
add no meaningful information.

Table5.2. Collationsnew in Firebird

Character set Coallation Language Details Added in
CP943C CP943C_UNICODE Japanese 21
GB18030 GB18030_UNICODE Chinese 25
GBK GBK_UNICODE Chinese 21
1SO8859_1 ES ES CI_Al Spanish ci, ai 2.0

FR_FR CI_Al French ci,a 21
PT_BR Brazilian Portuguese ci,a 2.0
1SO8859 2 Cs cz Czech 1.0
1ISO_ HUN Hungarian 15
ISO_PLK Polish 2.0
1SO8859 13 LT LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
UNICODE_CI All Ci 21
UNICODE_CI_Al All ci, ai 25
WIN1250 BS BA Bosnian 2.0
PXW_HUN Hungarian Ci 1.0
WIN_CZ Czech Ci 2.0
WIN_CZ_CI_Al Czech ci, ai 2.0
WIN1251 WIN1251_UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 2.0
WIN1257 WIN1257_EE Estonian dic 2.0

23

Data types and subtypes

Character set Collation Language Details Added in
WIN1257 LT Lithuanian dic 2.0
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 2.0
T1S620 T1S620_UNICODE Thai 21

A note on the UTF8 collations

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, & b, B...

The UCS BASIC collation sorts in Unicode code-point order: A, B, a, b, &.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

UNICODE _Cl istruly case-insensitive. In asearch for e.g. 'Applé€, it will also find ‘apple’, '"APPLE' and 'aPPLE'.

UNICODE_CI_Al is accent-insensitive as well. According to this collation, 'APPEL' equals 'Appél".

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones
listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation 1S08859 1 UNI CODE for |1S08859 1

Thenew Unicode collationsall havethe name of their character set with_UNICODE added. (Thebuilt-in Unicode
collationsfor UTF8 arethe exceptiontotherule.) They are defined, along with the other collations, in the manifest

filef bi ntl. conf inFirebird'si nt| subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT_UNI for |S08859 1 from external

See CREATE COLLATION for the full syntax.

(' 1S08859_1_UNI CCDE')

24

Chapter 6

DDL statements

The statements in this chapter are grouped by the type of database object they operate on. For instance,
ALTER DATABASE, CREATE DATABASE and DROP DATABASE are all found under DATABASE; DECLARE
EXTERNAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; €tc.

CHARACTER SET

ALTER CHARACTER SET

Availablein: DSQL

Added in: 2.5

Description: With ALTER CHARACTER SET, the default collation of a character set can be changed. This will

affect all future usage of the character set, except where overridden by an explicit COLLATE clause. Thecollation
of existing domains, columns and PSQL variables will not be changed.

Syntax:

ALTER CHARACTER SET charset SET DEFAULT COLLATI ON col | ation
Example:

alter character set utf8 set default collation unicode_ci_ai
Notes:

» If you use SET DEFAULT COLLATION on the default character set of the database, you have effectively set
(or overridden) the default collation for the database.

» If you use SET DEFAULT COLLATION on the connection character set, string constants will be interpreted
according to the new default collation (unless character set and/or collation are overridden). In most situations,
thiswill make no difference, but comparisons may have another outcome if the collation changes.

COLLATION

CREATE COLLATION

Availablein: DSQL

25

DDL statements

Addedin: 2.1
Changedin: 2.5
Description: Adds a collation to the database. The collation must already be present on your system (typically

in alibrary file) and must be properly registered in a. conf fileinthei ntl subdirectory of your Firebird
installation. Y ou may also base the collation on one that is already present in the database.

Syntax:
CREATE COLLATI ON col | nane
FOR char set
[FROM basecol | | FROM EXTERNAL (' extnane')]

[NO PAD | PAD SPACE]

[CASE [| N] SENSI Tl VE]

[ACCENT [I Nl SENSI TI VE]
['<specific-attributes>']

<specific-attributes>
<attri bute>

col I nane = the nane to use for the new collation

char set = a character set present in the database
basecol | = a collation already present in the database
ext nane = the collation nanme used in the .conf file

<attribute> [; <attribute> ...]
attrnane=attrval ue

» |f no FROM clauseis present, Firebird will scanthe. conf file(s) inyouri nt | subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
isthe same as specifying “FROM EXTERNAL (‘col | nane")”.

» The single-quoted ext nane is case-sensitive and must be exactly equal to the collation name
inthe. conf file. Thecol | nanme, char set and basecol | parameters are case-insensitive,
unless surrounded by double-quotes.

Soecific attributes: Thetable below liststhe available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE collations’.

Table 6.1. Specific collation attributes

Name Values Valid for Comment

DISABLE- 0,1 1 bpc Disables compressions (aka contractions).
COMPRESSIONS Compressions cause certain character sequencesto be
sorted as atomic units, e.g. Spanish c+h as a single

character ch.
DISABLE- 0,1 1 bpc Disables expansions. Expansions cause certain
EXPANSIONS characters (e.g. ligatures or umlauted vowels) to be
treated as character sequences and sorted accordingly.
ICU-VERSION default |UNI Specifies the ICU library version to use. Valid
or Mm values are the ones defined in the applicable

<intl _nodule> element in intl/fbintl.
conf . Format: either the string literal “def aul t”

26

DDL statements

Name Values Valid for Comment

or a maor+minor version number like “3.0" (both
unquoted).

LOCALE xx_YY UNI Specifies the collation locale. Requires complete
version of ICU libraries. Format: a locale string like
“du_NL” (unquoted).

MULTI-LEVEL 0,1 1 bpc Uses more than one ordering level.

NUMERIC-SORT 0,1 UNI Treats contiguous groups of decimal digits in the
string as atomic units and sorts them numerically.
(Thisisalso known as natural sorting.)

SPECIALS-FIRST 0,1 1 bpc Orders special characters (spaces, symbols etc.)
before alphanumeric characters.

Note: The NUMERIC-SORT specific attribute was added in Firebird 2.5.

Examples:

Simplest form, using the name asfound in the . conf file (case-insensitive):

create collation iso8859 1 unicode for

i s08859 1

Using a custom name. Notice how the “external” name must now exactly match the name in the

. conf file

create collation |at_uni

for is08859 1
from ext er nal

("1S08859_1_UNI CCDE')

Based on a collation already present in the database:

create collation es_es_nopad_ci

for is08859 1
fromes_es
no pad

case insensitive

With a special attribute (case-sensitive!):

create collation es_es_ci_conpr

for is08859_1
fromes_es

case insensitive

" DI SABLE- COVPRESSI ONS=0'

Tip

If you want to add a new character set with its default collation in your database, declare and run the stored
proceduresp_regi ster _character_set (nane, max_bytes_per _character),foundinm sc/
i ntl.sql under your Firebird installation directory. Please note: in order for this to work, the character set
must be present on your system and registered ina. conf fileinthei nt | subdirectory.

27

DDL statements

DROP COLLATION
Availablein: DSQL
Addedin: 2.1

Description: Removes a collation from the database. Only user-added collations can be removed in thisway.

Syntax:

DROP COLLATI ON name

Tip

If you want to remove an entire character set with all itscollations from your database, declare and run the stored
procedure sp_unr egi st er _character _set (nane), found in m sc/intl.sqgl under your Firebird
installation directory.

COMMENT

Availablein: DSQL
Added in: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:
COWWENT ON <object> IS {' sometext' | NULL}

DATABASE

| <basic-type> objectnane

| COLUMN rel ationnane. fi el dname
| PARAMETER procnane. par amane

<obj ect >

<basi c-type> ::= CHARACTER SET | COLLATION | DOVAIN | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX
| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VI EW

Note

If you enter an empty comment (* *), it will end up as NULL in the database.

Examples:
comment on database is 'Here''s where we keep all our customer records.'
conment on table Metals is 'Also for alloys'

comment on colum Metals.IsAlloy is 'O = pure netal, 1 = alloy’

28

DDL statements

comment on index ix_sales is 'Set inactive during bulk inserts!’

DATABASE

CREATE DATABASE
Availablein: DSQL, ESQL
Syntax (partial):
CREATE { DATABASE | SCHEMA}
[PAGE_SI ZE [=] si ze]
[DEFAULT CHARACTER SET charset [COLLATI ON col | ati on]]
[DI FFERENCE FILE ' filepath']

size ::= 4096 | 8192 | 16384

* If the user supplies asize smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizeswill be silently converted to the next lower supported size.

16 Kb page size supported, 1 and 2 Kb deprecated
Changedin: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with
these page sizes, but it will connect to existing small-page databases without any problem.

Default collation for the database
Added in: 2.5

Description: In Firebird 2.5 and up, you can specify a collation with the default character set, as shown in the
Syntax block above. If present, this collation will become the default collation for the default character set (and
hence for the entire database, except where another character set is used).

Example:
create database "colltest.fdb" default character set is08859 1 collation du_nl

Please notice: The keyword to use hereis COLLATION, not the usual COLLATE.

DIFFERENCE FILE parameter
Added in: 2.0

Description: The DIFFERENCE FILE parameter was added in Firebird 2.0, but not documented at the time. For
afull description, see ALTER DATABASE :: ADD DIFFERENCE FILE.

29

DDL statements

ALTER DATABASE
Availablein: DSQL, ESQL
Description: Alters adatabase's file organisation or togglesits “ safe-to-copy” state.
Syntax:
ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FI LE 'filepath' | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP]
<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> .= FILE '"filepath'
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PAGE[S]]
The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP
Availablein: DSQL
Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter database begi n backup

END BACKUP
Availablein: DSQL
Added in: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
ghak are still possible.)

Example:

al ter dat abase end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

30

http://www.firebirdsql.org/en/documentation/

DDL statements

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goesinto
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
al ter database add difference file ' C \Firebird\ Dat abases\ Frui t base. del ta'
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

» If you provide arelative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

* If you want to change an existing setting, DROP the old one first and then ADD the new one.

* When not overridden, the delta file gets the same path and filename as the database itself, but with the
extension. del t a

DROP DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop afile. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

al ter database drop difference file

DOMAIN

CREATE DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults

Changed in: 1B

31

DDL statements

Description: Any context variable that is assignment-compatible to the new domain's data type can be used as
adefault. Thiswas aready the casein InterBase 6, but the Language Reference only mentioned USER.

Example:

create domain DDate as
dat e
default current _date
not null

ALTER DOMAIN

Availablein: DSQL, ESQL

Warning

If adomain'sdefinitionischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

Rename domain
Added in: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter domain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changed in: 1B

Description: Any context variable that is assignment-compatible to the domain's data type can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter domai n DDate
set default current _date

EXCEPTION

CREATE EXCEPTION

Availablein: DSQL, ESQL

32

DDL statements

Message length increased
Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create excepti on Ex_TooManyManagers
"Too many nmanagers: An attenpt was nmade to create nore managers than the
maxi mum defined in the Linmts table. If you really need to create nore
managers than you have now, raise the limt first. However, please consult
your departnent''s manager before doing so. Otherw se, your decision may
be overturned later and the additional nanager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION
Availablein: DSQL
Added in: 2.0

Description: If the exception does not yet exigt, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

RECREATE EXCEPTION

Availablein: DSQL

Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. This will fail if there are existing dependencies on

the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

33

DDL statements

EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION
Availablein: DSQL, ESQL
Description: This statement makes an external function (UDF) available in the database.
Syntax:
DECLARE EXTERNAL FUNCTI ON | ocal nanme
[<arg_type decl> [, <arg_ type decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_nane’ MODULE_NAME 'Iibrary_nange'

sql type [BY DESCRI PTOR] | CSTRI N& I engt h)
sql type [BY { DESCRI PTOR| VALUE}] | CSTRI N& | engt h)

<arg_type_decl >
<return_type_decl >

Restrictions

e TheBY DESCRIPTOR passing method is not supported in ESQL .

You may choose | ocal nanme freedly; thisis the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

BY DESCRIPTOR parameter passing
Availablein: DSQL
Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLsin ameaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n
Availablein: DSQL, ESQL
Added in: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” clauseadded —n being the position of said parameter. Thisclause datesback to | nterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

ALTER EXTERNAL FUNCTION

Availablein: DSQL

DDL statements

Added in: 2.0
Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.

Syntax:

ALTER EXTERNAL FUNCTI ON f uncnane
<nmodi fication> [<nodi fication>]

<nmodi fication> ::= ENTRY_PO NT 'newentry-point'
| MODULE_NAME ' new nodul e- nane'

Example:

alter external function Phi nodul e_nanme ' NewUdfLi b’

FILTER

DECLARE FILTER

Availablein: DSQL, ESQL

Changedin: 2.0

Description: Makes aBLOB filter available to the database.
Syntax:

DECLARE FILTER filternane
| NPUT_TYPE <sub_type> OQUTPUT_TYPE <sub_t ype>
ENTRY_PO NT ' function_nanme’ MODULE_NAME 'Iibrary_nange'

<sub_type> = nunber | <mmenonic>

<mmenonic> ::= binary | text | blr | acl | ranges | summary | format
| transaction_description | external file_description
| user_defined

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an aready existing i nput-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

» The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype 0 was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:

decl are filter Funnel
i nput _type blr output_type text
entry _point 'blr2asc' nodul e _nanme 'nyfilterlib’

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDB$TY PES system table as shown below. Once committed, the mnemonics can be used in subseguent
filter declarations.

35

DDL statements

insert into rdb$types (rdb$field_nane, rdb$type, rdb$type_nane)
val ues (' RDB$FI ELD SUB TYPE', -33, 'MD")

Thevauefor r db$f i el d_name must always be 'RDB$FIELD_SUB_TYPE'. If you define your mnemonicsin
al-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

CREATE INDEX
Availablein: DSQL, ESQL
Description: Creates an index on atable for faster searching, sorting and/or grouping.

Syntax:

CREATE [UNI QUE] [ASC] ENDING | [DESC] ENDING] | NDEX i ndexnane
ON t abl enane
{ (<col> [, <col>...]) | COWPUTED BY (expression) }

<col> ::= a colum not of type ARRAY, BLOB or COWPUTED BY

UNIQUE indices now allow NULLsS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions
Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upname on persons conputed by (upper(nane));
conmmi t;

-- the following queries will use ix_upnane:

sel ect * from persons order by upper(nane);

sel ect * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper(nanme) = ' BROM ;

del ete from persons where upper(nane) = 'BROW and age > 65;

create descending index i x_events_ yt
on MyEvents
conputed by (extract(year from StartDate) || Town);

36

DDL statements

conmi t;
-- the following query will use ix_events_yt:

select * from WEvents
order by extract(year from StartDate) || Town desc;

Maximum index key length increased
Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table 6.2. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per charset type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changedin: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a “hard” ceiling, the number of indices creatable in practice is still limited by the
database page size and the number of columns per index, as shown in the table below.

Table 6.3. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 cal 2cols 3coals
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

37

DDL statements

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table also including Firebird versions 1.0-1.5, see the Notes at the end of the book.

PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure, an
executable block or atrigger. Stored procedures, executable blocks and triggers are written in Procedural SQL
(PSQL). Most SQL statements are also available in PSQL, sometimes with restrictions or extensions. Notable
exceptions are DDL and transaction control statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE
Availablein: DSQL, ESQL

Description: Creates a stored procedure.

Syntax:
CREATE PROCEDURE procnane
[(<inparamr [, <inparank ...])]
[RETURNS (<outparane [, <outparan> ...])]
AS

[<decl ar ati ons>]
BEA N

[<PSQL st at enent s>]
END

<param decl > [{= | DEFAULT} val ue]

<par am decl >

paramane <type> [NOT NULL] [COLLATE coll ation]

sql _datatype | [TYPE OF] domain | TYPE OF COLUW rel. col
See PSQL:: DECLARE for the exact syntax

<i npar anp

<out par anp
<par am decl >
<type>

<decl arati ons>

/* If sql _datatype is a string type, it may include a character set */

TYPE OF COLUMN in parameter and variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. Only thetypeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values
are never copied from the source column.

Example:

/* Assuming DDL autoconmit and connection charset UTF8 */

38

DDL statements

create domai n dphrase as
varchar (200) character set utf8 collate unicode_ci_ai;

create tabl e phrases (phrase dphrase);

set term#
create procedure equal phrases (a type of colum phrases. phrase,
b type of columm phrases. phrase)

returns (res varchar(30))

as

begi n
if (a=Db) then res = "'Yes'; else res ="' No
suspend;

end#

set term; #

sel ect res from equal phrases(' Appel ', 'appél');

-- result is 'Yes'

Warnings

 For text types, character set and collation are included by TYPE OF COLUMN — just as when [TYPE OF]
<domai n> is used. However, due to a bug, the collation is not always taken into consideration when
comparisons (e.g. equality tests) are made. In cases where the collation is of importance, test your code
thoroughly before deploying! This bug isfixed for Firebird 3.

e |f the column's type is changed at a later time, PSQL code using that column may become invalid. For
information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document

Domains supported in parameter and variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL data types when declaring input/
output parameters and local variables. With the “TYPE OF” modifier, only the domain's type is used — not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and
collation are aways preserved.

Example:

create domai n bool 3
smal | i nt
check (value is null or value in (0,1));

create domai n bi gposnum
bi gi nt
check (value >= 0);

/* Determines if Ais a multiple of B: */

set term#;

create procedure isnultiple (a bigposnum b bigposnun
returns (res bool 3)

as
declare ratio type of bigposnum -- ratio is a bigint

39

DDL statements

decl are renai nder type of bigposnum -- so is renainder
begi n

if (ais null or bis null) then res = null;

else if (b =0) then

begin
if (a =0) thenres = 1; else res = 0;
end
el se
begin
ratio = a / b; -- integer division

remai nder = a - b*ratio;
if (remainder = 0) then res = 1; else res = 0;
end
end#
set term;#

Warning

If adomain'sdefinitionischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

create procedure Spani shToDutch
(es_1 varchar(20) character set is08859 1 collate es_es,
es_2 ny_char_domain collate es_es)

returns
(nl _1 varchar (20) character set is08859 1 collate du_nl,
nl _2 my_char_donain collate du_nl)

as

decl are s_tenp varchar (100) character set utf8 collate unicode;
begi n

end

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
create procedure RegisterOder
(order_no int not null, description varchar(200) not null)
returns

(ticket_no int not null)

40

DDL statements

as
declare tenp int not null;
begi n

end

Default argument values
Changedin: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items (possibly even al) from the end of the argument list.

Syntax:
CREATE PROCEDURE procnane (<inparan> [, <inparams ...])
<inparant ::= parammane datatype [{= | DEFAULT} val ue]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create procedure grab_ints (a integer, b integer)
as

begi n
end

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Added in: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caler to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) ="'-")

41

DDL statements

Classic Server: Altered procedure immediately visible to other clients
Changedin: 2.5

Description: Traditionally, when a client used ALTER PROCEDURE on a Classic server, other clients would
keep seeing (and possibly executing) the old version for the duration of their connection. This has been fixed in
2.5. Now, dl clients see the new version as soon as the changes have been committed.

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

Domains supported in parameter and variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL data types when declaring input/
output parameters and local variables. See CREATE PROCEDURE for syntax and details.

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables. See CREATE PROCEDURE for syntax and details.

Restriction on altering used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

TYPE OF COLUMN in parameter and variable declarations
Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. See CREATE
PROCEDURE for syntax and details.

CREATE OR ALTER PROCEDURE

Availablein: DSQL

Added in: 1.5

42

DDL statements

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
aready exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE
Availablein: DSQL
Addedin: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists,
RECREATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if
the existing SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

CREATE SEQUENCE
Availablein: DSQL
Addedin: 2.0

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

43

DDL statements

Syntax:

CREATE SEQUENCE sequence- nane
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dialect. However:

» If theclient dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.

» If generator values are fed into a 32-bit field or variable, all goeswell until the actual value exceeds the 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE GENERATOR
Availablein: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred
Changedin: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised
Changedin: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE
Availablein: DSQL
Added in: 2.0

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have always called agenerator. “ ALTER SEQUENCE ... RESTART WITH” isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:

ALTER SEQUENCE sequence- nane RESTART W TH <newval >

DDL statements

<newal > ::= A signed 64-bit integer val ue.
Example:

al ter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE is a mighty fine way of screwing up your database! Under normal
circumstances you should only use it right after CREATE SEQUENCE, to set theinitial value.

See also: CREATE SEQUENCE

SET GENERATOR
Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-
compliant ALTER SEQUENCE syntax is preferred.

Syntax:
SET GENERATOR gener at or - namre TO <new- val ue>

<newvalue> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE
Availablein: DSQL
Addedin: 2.0

Description: Removes asequence or generator from the database. Its (very small) storage space will befreed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called agenerator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.

Syntax:

DROP SEQUENCE sequence- nane
Example:

drop sequence seqt est

See also: CREATE SEQUENCE

45

DDL statements

DROP GENERATOR
Availablein: DSQL

Added in: 1.0

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:
DROP GENERATCR gener at or - nane

From Firebird 2.0 onward, the SQL -compliant DROP SEQUENCE syntax is preferred.

TABLE

CREATE TABLE

Availablein: DSQL, ESQL

Global Temporary Tables (GTTs)
Added in: 2.1

Description: Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and whenthe GTT isreferenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:
CREATE GLOBAL TEMPORARY TABLE nane

(col um_def [, columm_def | table_constraint ...])
[ON COWM T {DELETE | PRESERVE} RO\

e ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT
PRESERVE ROWS a connection-level GTT.

* AN EXTERNAL [FILE] clauseis not allowed on a global temporary table.

Restrictions. GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys,
references, indices, triggers...) but there are afew restrictions:

» GTTsand regular tables cannot reference one another.

» A connection-bound (*PRESERVE ROWS") GTT cannot reference a transaction-bound (“DELETE ROWS")
GTT.

46

DDL statements

» Domain constraints cannot reference any GTT.

» Thedestruction of aGTT instance at the end of its life cycle does not cause any before/after delete triggers
tofire.

Example:

create global tenporary table MyConnGIT (
idint not null primry key,
txt varchar (32),
ts timestanp default current_timestanp

)

on conmit preserve rows;
commit;

create global tenporary table MyTXGIT (

idint not null primry key,

parent _id int not null references MyConnGIT(id),
txt varchar (32),

ts timestanp default current_timestanp

)]
comm t;
Tip
In an existing database, it's not always easy to tell aregular tablefromaGTT, or atransaction-level GTT from
aconnection-level GTT. Use this query to find out atable's type:
sel ect t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and r.rdb$rel ati on_nane = ' TABLENAME
Or, for an overview of all your relations:
sel ect r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$rel ati on_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and coal esce (r.rdb$systemflag, 0) =0
GENERATED ALWAYS AS
Addedin: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:

col nane [coltype] GENERATED ALWAYS AS (expression)

47

DDL statements

Example:
create table Persons (
idint primary key,
firstnane varchar(24) not null,
m ddl enanme var char (24),
| ast nane varchar (24) not null,
full name varchar(74) generated al ways as
(firstnane || coalesce(’ ' || mddlenane, "') || " " || lastnane),
street varchar(32),

)

Note: GENERATED ALWAY S ASisnot currently supported in index definitions.

CHECK accepts NULL outcome
Changedin: 2.0
Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLSs pass and only consider the check failed if the
outcomeisf al se.
Example:

Checks like these:

check (val ue > 10000)

check (Town like 'Arst %)

check (upper(value) in ("A, "B, "X))

check (M ni mum <= Maxi mum

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not nul | ” predicatesto your
CHECKSsiif they should continue to reject NULL input.

Context variables as column defaults
Changedin: IB

Description: Any context variablethat isassignment-compatibl e to the column datatype can be used as adefault.
Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create table MyData (
idint not null primary key,

48

DDL statements

record_created tinestanp default current _tinestanp,

FOREIGN KEY without target column references PK
Changed in: 1B

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

a int not null primry key,
b int not null unique

)

create table beuk (
b int references eik

)i

-- beuk.b references eik.a, not eik.b

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now alowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiplerows having all the UK columns NULL are allowed.
* Multiple rows having a different subset of UK columns NULL are allowed.

* Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they congtituted the entire unique key.

49

DDL statements

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraintsare named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASCI ENDI NG | DESC] ENDI NG] | NDEX i ndex_nane]

Examples:
The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:
create table custoners (
custno int not null constraint pk_cust prinmary key using index ix_custno,
This, however:
create table custoners (
custno int not null primary key using index ix_custno,
..will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples:
create table people (
idint not null,

ni cknane varchar(12) not null,
country char (4),

50

DDL statements

constrai nt pk_people primary key (id),
constrai nt uk_ni cknane uni que (nicknane) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

Important

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keysreferencing it descending as well.

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults
Changed in: IB

Description: Any context variable that is assignment-compatible to the new column'’s datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN also for generated (computed) columns
Availablein: DSQL
Addedin: 2.5

Description: Firebird 2.5 supportsthe altering of generated (computed) columns, something that was previously
impossible. Only the data type and the generation expression can be changed; you cannot change a base column
into a generated column or vice versa.

Syntax:
ALTER TABLE t abl enane ALTER [COLUWMN] gencol nane
[TYPE dat at ype]
{ GENERATED ALWAYS AS | COWPUTED BY} (expression)
Example:

create table nunms (a int, b generated always as (3*a));
conmi t;

alter table nuns alter b generated always as (4*a + 7);
commi t;

51

DDL statements

Notice that you can use GENERATED ALWAY S AS when altering columns defined with COMPUTED BY and
vice versa.

ALTER COLUMN ... TYPE no longer fails if column is used in trigger or SP
Changedin: 2.5

Description: Previoudly, if atable column was referenced in a stored procedure or trigger, the column'’s type
could not be changed, even if the change would not break the PSQL code. Now such changes are permitted —
even if they do break the code.

Warning

This means that, in the current situation, you can commit changes that break SP's or triggers without getting
as much as awarning! For information on how to track down invalidated PSQL modules after a column type
change, please read the note The RDB$VALID_BLR field, near the end of this document.

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.

Syntax:

ALTER TABLE t abl enane ALTER [COLUWN] col nane DROP DEFAULT
Example:

alter table Trees alter Grth drop default

Anerrorisraised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Addedin: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
adefault, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:
ALTER TABLE tabl enane ALTER [COLUMN] col nane SET DEFAULT <defaul t >
<default> ::= literal-value | context-variable | NULL

Example:

alter table Custonmers alter EnteredBy set default current_user

52

DDL statements

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based
Changedin: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:
ALTER TABLE t abl enane ALTER [COLUMN] col name POSI TI ON <newpos>
<newpos> ::= an integer between 1 and the nunber of colums
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome
Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLSs pass and only consider the check failed if the
outcomeisf al se. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changed in: 1B

Description: If you create aforeign key without specifying a target column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

)5

create table beuk (
b int

)5

53

DDL statements

alter table beuk
add constraint fk_beuk
foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:
col nane [coltype] GENERATED ALWAYS AS (expression)
Example:
alter table Friends
add full nane varchar (74)

generated al ways as
(firstname || coalesce(" ' || mddlename, "") || ' ' || |astnane)

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For afull discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASCI ENDI NG | DESC ENDI NG] | NDEX index_nane]

54

DDL statements

For afull discussion and examples, see CREATE TABLE :: USNG INDEX subclause.

RECREATE TABLE

Availablein: DSQL

Addedin: 1.0

Description: Creates or recreates atable. If atable with the same name aready exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the

existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

CREATE TRIGGER
Availablein: DSQL, ESQL

Description: Createsatrigger, ablock of PSQL codethat is executed automatically upon certain database events
or mutations to a table or view.

Syntax:

CREATE TRI GGER nane
{<relation_trigger_|egacy>
| <relation_trigger_sql 2003>

| <dat abase_trigger> }
AS
[<decl ar ati ons>]
BEG N
[<st at enent s>]
END
<relation_trigger_I| egacy> ::= FOR {tabl enane | viewnant}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_|list>
[POSI TI ON nunber]
<relation_trigger_sql2003> ::= [ACTIVE | | NACTI VE]
{BEFORE | AFTER} <nutation_|list>
[POSI TI ON nunber]
ON {tabl enane | vi ewnane}
<dat abase_tri gger > ::= [ACTIVE | |NACTI VE]

ON db_event
[PCSI TI ON nunber]

<mutation_list>
nmut ati on

mutation [OR mutation [OR nutation]]
| NSERT | UPDATE | DELETE

55

DDL statements

db_event = CONNECT | DI SCONNECT | TRANSACTI ON START

| TRANSACTI ON COMW T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl ar ati ons> ::= See PSQL::DECLARE for the exact syntax

» “Legacy” and “sgl2003” relation triggers are exactly the same. The only thing that differsisthe
creation syntax.

» Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

» When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur
at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers
Added in: 2.1

Description: Since Firebird 2.1, an aternative, SQL-2003-compliant syntax can be used for triggers on tables
and views. Instead of specifying “FOR r el at i onnane” before the event type and the optional directives
surrounding it, you can now put “ON r el at i onnane” after it, as shown in the syntax earlier in this chapter.

Example:

create trigger biu_books
active before insert or update position 3
on books
as
begi n
if (new.idis null)
then new.id = next value for gen_bookids;
end

Database triggers
Added in: 2.1

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT,
DISCONNECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the
database owner and SY SDBA can create, alter and drop these triggers.

Syntax:

CREATE TRI GGER nane

[ACTI VE | | NACTI VE]
ON db_event
[POSI TI ON nunber]
AS

[<decl ar ati ons>]
BEG N

[<st at enent s>]
END

db_event ::= CONNECT | DI SCONNECT | TRANSACTI ON START

56

DDL statements

| TRANSACTION COMM T | TRANSACTI ON ROLLBACK

nurber o= 0..32767 (default is 0)
<decl arati ons> .. = See PSQ.::DECLARE for the exact syntax
Example:

create trigger tr_connect
on connect
as
begi n
insert into dblog (w e, wanneer, wat)
val ues (current_user, current_tinestanp, 'verbind');
end

Execution of database triggers and handling of exceptions:

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
al goes well, the transaction is committed. Uncaught exceptions roll back the transaction, and:

- Inthe case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
- With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

- InaSTART trigger, the exception is reported to the client and the transaction is rolled back.

- InaCOMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit
is canceled.

- InaROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

It follows from the above that there is no direct way of knowing if a DISCONNECT or TRANSACTION
ROLLBACK trigger caused an exception.

It also follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for away around
this Catch-22 situation.

In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SY SDBA.

57

DDL statements

TYPE OF COLUMN in variable declarations
Addedin: 2.5
Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible

to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of data types
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
S0 you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* common code: */
new. part name_upper = upper (new. partnane);
end

58

DDL statements

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e If youtry to read their field values, NULL is returned.
« If you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create trigger bi_atable for atable
active before insert position O
as

begi n
end

CREATE TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER
Availablein: DSQL, ESQL

Description: Altersan existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of arelation trigger cannot be changed.

Syntax:

ALTER TRI GGER nane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <mutation_list> | ON db_event]
[POSI TI ON nunber]
[AS
[<decl arati ons>]

59

DDL statements

BEGA N
[<st at enent s>]
END |

» See CREATE TRIGGER for the meaning of <mut ati on_| i st > etc.

Database triggers
Added in: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For afull
discussion of thisfeature, see CREATE TRIGGER :: Database triggers.

TYPE OF COLUMN in variable declarations
Added in: 2.5
Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible

to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of data types
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers

Changedin: 2.0, 2.0.1

60

DDL statements

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count
Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, I nterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

CREATE OR ALTER TRIGGER
Availablein: DSQL
Added in: 1.5

Description: If the trigger does not yet exigt, it is created just as if CREATE TRIGGER were used. If it already
exists, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

61

DDL statements

DROP TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER
Availablein: DSQL
Addedin: 2.0

Description: Creates or recreatesatrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

Restriction on recreating used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW
CREATE VIEW
Availablein: DSQL, ESQL
Syntax:
CREATE VI EW vi ewnane [<full _colum_li st>]
ﬁssel ect _stat enent >
[W TH CHECK OPTI ON|
<full _colum_list> ::= (colnane [, colnane ...])

Views can select from stored procedures
Changedin: 2.5

Description: In Firebird 2.5 and up, views can select from selectabl e stored procedures.

62

DDL statements

Example:
create view | ow bones as

sel ect id, nanme, description fromthem bones(' human')
where name in ('leg_bone', 'foot_bone', 'toe_bone')

Views can infer column names from derived tables or GROUP BY
Changedin: 2.5

Description: In Firebird 2.5 and up, views can infer the names of columns from a derived table or involved
in a GROUP BY clause. Previoudly it was necessary to specify explicit aiases for these columns (either per
column or inafull list).

Examples:

create view tickle as
select t from(select t fromtackle)

create view vstocks as
sel ect kind, sum(stock) s from stocks
group by kind

In the second example, notice that it is still necessary to alias the SUM column. Previous Firebird
versions also required an explicit alias for the KIND column.

Per-column aliases supported in view definition
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of column aiasesin the SELECT statement. Y ou can alias none,
some or al of the columns; each alias used becomes the name of the corresponding view column.

Syntax (partial):
CREATE VI EW vi ewnane [<full _col um_li st >]
AS
SELECT <col um_def> [, <columm_def> ...]
<full _colum_list> ::= (colnane [, colnane ...])
<col um_def > ::= {source_col | expr} [[AS] colalias]

Notes:

» |f the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

e The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you alias such
columnsin the SELECT clause.

Full SELECT syntax supported

Changedin: 2.0, 2.5

63

DDL statements

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements.
Consequently, the following elements are (re)allowed in view definitions. FIRST, SKIP, ROWS, ORDER BY,
PLAN and UNION.

Note

In Firebird 2.5 and up, it is no longer necessary to supply aview column list if the view isbased on a UNION:

create view vpl anes as
sel ect make, nodel fromjets
uni on
sel ect make, nodel from props
uni on
sel ect make, nodel fromgliders

The column names will be taken from the union. Of course you can still override them with aview column list.

PLAN subclause disallowed in 1.5, reallowed in 2.0
Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in aview definition. From 2.0 onward
aPLAN isalowed again.

Triggers on updatable views block auto-writethrough
Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you define atrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

DDL statements

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create view vbase as select x from base;
set term#
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new. x = 33;
insert into base val ues (new. x, 0);

end#
set term ; #

Notes:

» Please notice that the problem described above only occurred for NOT NULL columns that were left outside
the view.

» Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

ALTER VIEW
Availablein: DSQL
Added in: 2.5

Description: Firebird 2.5 and up support ALTER VIEW, alowing you to change a view's definition without
having to drop it first. Existing dependencies are preserved.

Syntax: Exactly the same as CREATE VIEW.

CREATE OR ALTER VIEW
Availablein: DSQL
Addedin: 2.5

Description: CREATEORALTERVIEW will createtheview if it doesn't exist. Otherwise, it will alter theexisting
view, preserving existing dependencies.

Syntax: Exactly the same as CREATE VIEW.

RECREATE VIEW
Availablein: DSQL

Added in: 1.5

65

DDL statements

Description: Cresates or recreates a view. If aview with the same name aready exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

66

Chapter 7

DML statements

DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
[TRANSACTI ON nane]
FROM {t abl ename | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROA5 <nP [TO <n>]]
[RETURNI NG <val ues> [| NTO <vari abl es>]]

<nP, <n> = Any expression evaluating to an integer.
<val ues> = val ue_expression [, value_expression ...]
<vari abl es> = varnane [, :varnane ...]

Restrictions

e The TRANSACTION directiveis only available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

The RETURNING clauseis not available in ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

L] L] L] L]

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

delete from MyTabl e
where NaneBl ob collate pt_br = 'Joao'

67

DML statements

ORDER BY

Availablein: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN

Availablein: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
delete fromCities where nane starting 'Al ex'
delete fromCities where Cities.nane starting 'Al ex'
delete fromCities C where nane starting 'Al ex'
delete fromCities C where C nanme starting 'Al ex'

No longer possible:

delete fromCities C where Cities.nane starting 'Al ex'

RETURNING
Availablein: DSQL, PSQL
Addedin: 2.1

Description: A DELETE statement removing at most one row may optionally include a RETURNING clause in
order to return values from the deleted row. The clause, if present, need not contain al of the relation’'s columns
and may also contain other columns or expressions.

Examples:

del ete from Schol ars

68

DML statements

where firstnanme = 'Henry' and | astname = 'Higgins
returning |lastname, fullname, id

del ete from Dunbbel |s
order by iq desc
rows 1
returning lastname, iq into :lnanme, :iq;
Notes:

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
deleted, thefieldsin thisrow areall NULL. Thisbehaviour may changein alater version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing val ues.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
ROANE <> [TO <n>]
<>, <n> ::= Any expression evaluating to an integer

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

« |f m> thetotal number of rowsin the dataset, the entire set is del eted.
e |f m=0, no rows are del eted.
e |If m<O, anerrorisraised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

« |f m> thetotal number of rowsin the dataset, no rows are del eted.

e |f mlieswithin the set but n doesn't, the rows from mto the end of the set are deleted.
e |[fm<lorn<1,anerrorisraised.

e |f n=m1, norowsare deleted.

e |fn<ml, anerrorisraised.

ROWS can also be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Availablein: DSQL

69

DML statements

Added in: 2.0
Changedin: 2.1, 2.5

Description: Executes ablock of PSQL code asiif it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out par ans>)]

AS

[<decl arati ons>]
BEA N

[<PSQL st at enent s>]
END

<i npar ans>
<out par ans>
<par am decl >
<t ype>

<decl arati ons>

<paramdecl > = ? [, <inparans>]

<par am decl > [, <outparans>]

paramane <type> [NOT NULL] [COLLATE coll ation]

sql _datatype | [TYPE OF] domain | TYPE OF COLUWN rel. col
See PSQL:: DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1;
end
end

The next example calcul ates the geometric mean of two numbers and returns it to the user:

execute block (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqrt(x*y);
suspend;
end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, snal | est andl ar gest . For al thenumbersintherange
smal | est .. ar gest , theblock outputs the number itself, its square, its cube and itsfourth power.

execute block (smallest int = ?, largest int = ?)

70

DML statements

returns (nunmber int, square bigint, cube bigint, fourth bigint)
as
begi n

nunber = snall est;

whil e (nunber <= largest) do

begi n
square = nunber * nunber;
cube = nunmber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.
Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#
execute block (...)
as
begi n
statenent1;
st at enent 2;
end
#
set term ;#

In Firebird's isgl client you must set the terminator to something other than “; ” before you type in the
EXECUTEBLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered
as soon as it encounters the first semicolon.

» Executing ablock without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but beforeit is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar an?
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

 |f the block has output parameters, you must use SUSPEND or nothing will be returned.

e Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

COLLATE in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

71

DML statements

Example:

execut e bl ock
(es_1 varchar (20) character set is08859 1 collate es_es = ?)

returns
(nl _1 varchar (20) character set is08859 1 collate du_nl)
as
declare s_tenmp varchar (100) character set utf8 collate unicode;
begi n
end

NOT NULL in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
execute block (a int not null =2, bint not null = ?)
returns (product bigint not null, message varchar(20) not null)
as
decl are usel ess_dumy tinestanp not nul |
begi n
product = a*b;
if (product < 0) then message = 'This is bel ow zero."';
else if (product > 0) then nmessage = 'This is above zero.';
el se nessage = 'This nust be zero.';
suspend;
end

Domains instead of data types

Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring input/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value. If the domain is of a text type, its character set and collation
are alwaysincluded.

Example:

execute block (a ny_domain = ?, b type of ny_other_domain = ?)
returns (p my_third_domain)
as
declare s_tenp type of ny_third_donain;
begi n

end

72

DML statements

Warning

For input parameters, the collation that comeswith the domainisnot taken into consi deration when comparisons
(e.g. equality tests) are made. Thisis caused by a bug that has been fixed for Firebird 3.

TYPE OF COLUMN in parameter and variable declarations
Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. Only thetypeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values
are never copied from the source column.

Example:

create table nunbers (
bi gnum numeric(18),
smal | num nureri c(9)

)

execute bl ock (dividend type of columm nunbers. bi gnum= ?,
di vi sor type of columm nunbers. snall num = ?)
returns (quotient type of columm nunbers. bi gnum
remai nder type of colum nunbers. smal | num

as
begi n
quotient = dividend / divisor;
remai nder = nod (dividend, divisor);
suspend;
end
Warning

For input parameters, the collation that comes with the column's type is not taken into consideration when
comparisons (e.g. equality tests) are made. For local variables, the behaviour varies. This is caused by a bug
that has been fixed for Firebird 3.

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parametersfor the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may aso be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnarme
[TRANSACTI ON transacti on]

73

DML statements

[<in_item> [, <in_itemr ...]]
[RETURNI NG_VALUES <out _iten» [, <out_items ...]]

<in_itenp = <inparanpk [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar an> = an expression evaluating to the decl ared paraneter type
<out var > = a host |anguage or PSQ. variable to receive the return val ue
<nul I'i nd> = [I NDI CATOR] : host _| ang_i ntvar
Notes

e TRANSACTION clauses are not supported in PSQL.
» EXxpression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

* |In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:”). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
Examples: NEW.

In PSQL (with optional colons):

execut e procedure MakeFul | Nanme
:FirstNanme, :MddleNane, :LastNane
returni ng_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):

exec sql
execut e procedure MakeFul | Nare

:FirstName, : M ddl eNane, :LastName
ret urni ng_val ues : Ful | Nare;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nanme
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure NMakeFul | Name

"M./Ms. ' || FirstName, M ddl eNane, upper (Last Nane)
returning _val ues Ful | Nane;

INSERT

Availablein: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row isinserted), or they can
come from a SELECT statement (O to many rows inserted).

74

DML statements

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | vi ewnane}
{DEFAULT VALUES | [(<columm_list>)] <val ue_source>}
[RETURNI NG <val ue_l i st> [I NTO <vari abl es>]]

<col um_| i st> = colname [, colnanme ...]

<val ue_source> = VALUES (<value_list>) | <select_stnt>
<val ue_list> = value_expression [, value_expression ...]
<vari abl es> = :varnanme [, :varnane ...]

<sel ect _stnt> a SELECT whose result set fits the target colums

Restrictions

e The TRANSACTION directiveisonly availablein ESQL .

¢ The RETURNING clauseisnot availablein ESQL.

e The“INTO<vari abl es>" subclauseisonly availablein PSQL.

* When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

e Sincev. 2.0, no column may appear more than oncein the insert list.

INSERT ... DEFAULT VALUES
Availablein: DSQL, PSQL
Addedin: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. Thisisonly possibleif every NOT NULL or CHECKed columniin
the table either has a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input values.

Example:

insert into journal default val ues
returning entry_id

RETURNING clause
Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned valuesreflect any changes that may have been
made in BEFORE triggers, but not those in AFTER triggers.

Examples:

insert into Scholars (firstnane, |astnanme, address, phone, enmil)
values ('Henry', "Higgins', '27A Wnpole Street', '3231212', null)

75

DML statements

returning | astnane, fullname, id

insert into Dunbbells (firstnanme, |astnane, iq)
sel ect fname, Iname, igq fromFriends order by iqg rows 1
returning id, firstnane, iq into :id, :fname, :iq;
Notes:
* RETURNING isonly supported for VALUES inserts and — since version 2.1 — singleton SELECT inserts.

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are al NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT
Changedin: 2.0
Description: A SELECT query used in an INSERT statement may now be a UNION.
Example:
insert into Menbers (nunber, nane)
sel ect nunber, nanme from NewMenbers where Accepted = 1

uni on
sel ect nunber, nane from SuspendedMenbers where Vindicated = 1

MERGE

Availablein: DSQL, PSQL
Added in: 2.1

Description: Mergesdatainto atable or view. The source may atable, view or derived table (i.e. a parenthesized
SELECT statement or CTE). Each source record will be used to update one or more target records, insert a new
record inthetarget table, or neither. The action taken depends on the provided condition and the WHEN clause(s).
The condition will typically contain a comparison of fieldsin the source and target relations.

Syntax:
MERGE | NTO {tabl enane | viewnane} [[AS] alias]
USI NG {tabl ename | viewnane | (select_stnt)} [[AS] alias]
ON condition
VWHEN MATCHED THEN UPDATE SET col nane = value [, colname = value ...]
VWHEN NOT MATCHED THEN I NSERT [(<col ums>)] VALUES (<val ues>)

<colums> ::= colname [, colnane ...]
<val ues> = value [, value con]

Note: It is allowed to provide only one of the WHEN cl auses
Examples:

nmerge i nto books b

76

DML statements

usi ng purchases p
on p.title = b.title and p.type = 'bk'
when mat ched t hen
update set b.desc = b.desc || '; ' || p.desc
when not matched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

merge into custoners c
using (select * fromcustonmers_delta where id > 10) cd
on (c.id = cd.id)
when mat ched then update set name = cd. nane
when not matched then insert (id, nanme) values (cd.id, cd.nane)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

Warning

If the WHEN MATCHED clauseis present and multiple source records match the same record in the target table,
the UPDATE clause is executed for all the matching source records, each update overwriting the previous one.
Thisis non-standard behaviour: SQL -2003 specifies that in such a case an exception must be raised.

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality

Changedin: 1.5
Description: Several types of mixing and nesting aggregate functions are supported since Firebird 1.5. They

will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up alow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select nmax(i.rdb$statistics) || " (" || count(*) || ")

fromrdb$relation_fields rf
where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r

77

DML statements

join rdb$indices i on (i.rdb$relation_name = r.rdb$rel ati on_nane)
group by r.rdb$rel ation_nane
havi ng max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

This query returns each tables ID and field count. The subquery refers to flds.rdb
$rel ati on_nanme, whichisalso aGROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$relations rels
where rel s.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count(*) as "Fields"
fromrdb$relation fields flds
group by flds.rdb$rel ati on_nane

The next query shows the last field from each table and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds. rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb$field _nane
fromrdb$relation fields flds2
wher e
flds2.rdb$rel ati on_nanme = flds.rdb$rel ati on_name
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(fl ds.rdb$fiel d_position) + 1 as "Last fiel dpos"
fromrdb$relation fields flds
group by 1

The subquery aso contains the GROUP BY item f | ds. r db$r el ati on_nan®e, but that's not
immediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions

Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.

78

DML statements

Example:

sel ect
r.rdb$rel ati on_nane as "Tabl e",
sum (select count(*)
fromrdb$relation fields rf
where rf.rdb$rel ati on_nane = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$i ndi ces
on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"
or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUP BY list.

[AS] before relation alias
Added in: IB

Description: The keyword AS can optionally be placed before arelation alias, just asit can be placed before a
column alias. Thisfeature dates back to InterBase times, but wasn't documented in the IB Language Reference.

Syntax:

SELECT ... FROM <rel ation> [AS] alias

<relation> ::= A table, view or selectable SP
Examples:

sel ect order_no, total, fullnane

79

DML statements

fromorders as o join custoners as ¢ on o.cust_id = c.cust_id

sel ect order_no, total, fullnane
fromorders o join custoners ¢ on o.cust_id = c.cust _id

The two queries are fully equivalent.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NaneBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

Common Table Expressions (“WITH ... AS ... SELECT")
Availablein: DSQL, PSQL
Added in: 2.1

Description: A common table expression or CTE can bedescribed asavirtual tableor view, defined in apreamble
to a main query, and going out of scope after the main query's execution. The main query can reference any
CTEsdefined in the preamble asif they were regular tables or views. CTES can berecursive, i.e. self-referencing,
but they cannot be nested.

Syntax:

<ct e- def s>
<mai n- query>

<cte-construct>

<ct e-defs> ;= WTH [RECURSI VE] <cte> [, <cte> ...]

<cte> ::= nanme [(<colum-list>)] AS (<cte-stnt>)
<colum-1list> = colum-alias [, colum-alias ...]

<cte-stnt> ;1= any SELECT statenent or UNI ON

<mai n- query> ;.= the nmain SELECT statenent, which can refer to the

CTEs defined in the preanble
Example:

wi th dept _year budget as (
sel ect fiscal year,
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal year, dept_no

sel ect d. dept_no,

80

DML statements

d. depart nent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
from departnent d
|l eft join dept_year_budget dyb_2008
on d.dept _no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year_ budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009
where exists (
select * from proj _dept_budget b
where d.dept _no = b. dept_no
)

Notes:

» A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of its own (no nesting).

» CTEsdefined for the same main query can reference each other, but care should be taken to avoid loops.
» CTEs can be referenced from anywhere in the main query.
» Each CTE can be referenced multiple times in the main query, possibly with different aliases.

* When enclosed in parentheses, CTE constructs can be used as subqueriesin SELECT statements, but also in
UPDATES, MERGES €tc.

* InPSQL, CTEs are aso supported in FOR loop headers:

for with nmy_rivers as (select * fromrivers where owner = 'ne')
sel ect nane, length fromny_rivers into :rnanme, :rlen

do

begi n

end

Recursive CTES

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTES require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs isthat they use far less memory and CPU cycles than an equivaent recursive
stored procedure.

The execution pattern of arecursive CTE is asfollows:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one by one, using the current values from
the outer row as parameters.

81

DML statements

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
dept _year budget as (
sel ect fiscal _year,
dept _no,
sum(pr oj ect ed_budget) as budget
from proj _dept _budget
group by fiscal year, dept_no
)
dept _tree as (
sel ect dept_no,
head_dept,
depart nment,
cast('' as varchar(255)) as indent
from depart nent
where head_dept is nul

uni on al

sel ect d. dept_no,
d. head_dept,
d. depart nent,
h.i ndent ||

from departnent d
join dept _tree h on d. head_dept = h.dept_no

)

sel ect d. dept_no,
d.indent || d.departnent as departnment,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdept _tree d
left join dept_year budget dyb_2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year_budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

» A recursive reference cannot participate in an outer join.

* The maximum recursion depth is 1024.

Derived tables (* SELECT FROM SELECT")

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. Put otherwise, it is a subquery in the FROM clause.

82

DML statements

Syntax:

(sel ect-query)
[[AS] derived-table-alias]
[(<derived-col um-aliases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count(relation) as numtables

from (select r.rdb$relation_nanme as relation,

count (*) as fieldcount

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
group by relation)

group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbi nfo. descr,
dbi nf 0. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes:

Derived tables can be nested.

Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselectsand
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

Every column in aderived table must have aname. If it doesn't have one by nature (e.g. becauseit'saconstant)
it must either be given an alias in the usual way, or a column aiases list must be added to the derived table
specification.

The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Availablein: DSQL, PSQL

Added in: 1.0

83

DML statements

Changed in: 1.5
Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:
SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM . ..

<i nt - expr > = Any expression evaluating to an integer.
<col ums> ;.= The usual output colum specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the“() " may be omitted. Subselectson
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmast rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) is less than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nane from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, name from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nane from Peopl e
order by nane asc

DML statements

Two Gotchaswith FIRST in subselects
e This

del ete from MyTabl e where IDin (select first 10 ID from MyTabl e)

the ROWS syntax, available since Firebird 2.0.
e Querieslike:

...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

...where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, dlipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of

to the dataset as awhole.
Syntax:
SELECT ... FROM ...

GROUP BY <itemr [, <item ...]

<itenr ::= colum-nanme [COLLATE coll ation- nane]

Note: If you group by a column position, the expression at that position is copied internally from the select list.

| colume-alias
| col um-position
| expression

Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are smply invariables and will be used as such in the grouping. They
will have no effect though, astheir value is the same for each row.

A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

The select list may not contain expressionsthat can have different values within agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or paosition).

If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions

Changedin: 1.0, 1.5, 2.0

85

DML statements

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:

These three queries all achieve the same resuilt:

sel ect strlen(lastnane) as | en_nanme, count(*)
from peopl e
group by | en_name

sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by 1

sel ect strlen(lastnane) as |en_nanme, count(*)

from peopl e
group by strlen(l astnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and

alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and interna functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements. Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. name, garages. nane
from buses join garages on buses.garage id = garage.id

where nane = ' Phideaux |11l

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0
Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables

involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

86

DML statements

Syntax:
SELECT ...
FROM <rel ati on> CRCSS JO N <rel ati on>

<relation> ::= {table | view| cte | (select_stnt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnen
order by Men.age, Wnen. age

-- old syntax:

- - select * fromMen join Wonen on 1 =1
-- order by Men. age, Wonen. age

-- conmma synt ax:

- - select * from Men, Wonen
-- order by Men. age, Wonen. age

Named columns JOIN
Added in: 2.1

Description: A named columns join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:
SELECT ...
FROM <rel ation> [<join_type>] JON <rel ati on>
USI NG (col name [, colnane ...])

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [QUTER]

<rel ati on>
<j oi n_type>

Example:

select *
from books join shel ves
usi ng (shel f, bookcase)

The equivalent in traditional syntax:

sel ect *
from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes:

* Thecolumnsinthe USING clause can be selected without qualifier. Be aware, however, that doing so in outer
joinsdoesn't always give the sameresult asselecting | ef t .col name or ri ght .col nane. One of thelatter
may be NULL while the other isn't; plain col nane aways returns the non-NULL alternative in such cases.

87

DML statements

e SELECT * from anamed columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN
Added in: 2.1

Description: A natural join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:
SELECT . ..
FROM <rel ati on> NATURAL [<join_type> JON <rel ation>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [CQUTER]

<rel ati on>
<join_type>

Example:
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor = t.tutor and p.class = t.class

Notes:

» Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't always gives the same result as selecting | ef t .col nane or ri ght .col nane. One of
the latter may be NULL while the other isn't; plain col nanme always returns the non-NULL alternative in
such cases.

e SELECT * from anatural join returns each common column only once. In outer joins, such acolumn always
contains the non-NULL alternative except for rows where the field is NULL in both tables.

ORDER BY
Syntax:
SELECT ... FROM...
O?DER BY <ordering-item> [, <ordering-itemr ...]
<ordering-itenm> ::= {col-nane | col-alias | col-position | expression}

[COLLATE col | ati on- nane]

[ASCI ENDI NG | DESC] ENDI NG]
[NULLS { FI RST| LAST}]

Order by column alias

Added in: 2.0

88

DML statements

Description: Firebird 2.0 and above support ordering by column alias.
Example:
sel ect rdb$character_set _id as charset _id,
rdb$col l ation_id as coll _id,
rdb$col | ati on_nane as name

fromrdb$col | ati ons
order by charset _id, coll _id

Ordering by column position causes * expansion
Changedin: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possible in pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions
Addedin: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that
expressions consisting of a single non-negative whole number will beinterpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedureinvocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

89

DML statements

* Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, sinceits value is the same for each row.

NULLs placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLSs appear in the sorted column. Firebird 2.0 has changed the default placement of NULLS.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as follows:
* InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 7.1. NULLs placement in ordered columns

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nullsfirst — top top
order by Field [asc | desc] nulls last — bottom bottom

Notes

¢ Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering
behaviour under Firebird 2.0 and up.

¢ No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5,
that is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST
on descending sorts.

Examples:

select * from nsg
order by process_tine desc nulls first

sel ect * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder

uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

90

DML statements

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies a user plan for the data retrieval, overriding the plan that the optimizer would have
generated automatically.

Syntax:

PLAN <pl an_expr >

<pl an_expr > [JON | [SORT] [MERGE]] (<plan_itenmr [, <plan_itenr ...])

<plan_itenp <basic_itenr | <plan_expr>

<basic_itenp {table | alias}

{ NATURAL
| 1 NDEX (<indexlist>))
| ORDER index [INDEX (<indexlist>)]}

<i ndexl i st> ::= index [, index ...]

Handling of user PLANs improved
Changedin: 2.0
Description: Firebird 2 has implemented the following improvements in the handling of user-specified PLANS:

» Planfragments are propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied planswill be checked for correctnessin outer joins.
 Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changedin: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_nyfield index (ix_this, ix_that))

PLAN must include all tables

Changedin: 2.0

91

DML statements

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.
Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an adliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:

sel ect pears from Fruit

sel ect Fruit.pears fromFruit
sel ect pears fromFruit F
select F.pears fromFruit F
No longer possible:

select Fruit.pears fromFruit F

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.
Syntax:

With asingle SELECT:

SELECT <col ums> FROM . ..

[WHERE . . .]

[ORDER BY ...]
ROAS <> [TO <n>]

<col ums> = The usual output colum specifications.
<m, <n> = Any expression evaluating to an integer.
With a UNION:

SELECT [FIRST p] [SKIP gq] <columms> FROM ...
[WHERE . . .]
[ORDER BY ...]

UNI ON [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <col ums> FROM . . .

92

DML statements

[WHERE . ..]
[ORDER BY ...]

ROA5 <> [TO <n>]

With asingle argument m the first mrows of the dataset are returned.
Points to note:

« |f m> thetotal number of rows in the dataset, the entire set is returned.
e If m=0, an empty set is returned.
e |If m<O, anerror israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.
Points to note when using two arguments:

» If m> thetotal number of rows in the dataset, an empty set is returned.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

* If n =m1l, an empty set isreturned.

e If n<ml, anerror israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subqueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect name, phone, hourly_rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on

93

DML statements

sel ect hourly rate from acrobats)
order by hourly rate

UNION DISTINCT
Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:
SELECT (...) FROM (...)

UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

Example:
sel ect nanme, phone fromtranslators

uni on di stinct
sel ect nanme, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the samein both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

Itisessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM ssingle_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

94

DML statements

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
* withaview;

 with the output of a selectable stored procedure;

» with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes valuesin atable (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nane] {tabl enane | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROAE <nk [TO <n>]]
[RETURNI NG <val ues> [| NTO <vari abl es>]]

<np, <n>
<val ues>
<vari abl es>

Any expression evaluating to an integer.
val ue_expression [, value_expression ...]
:varnanme [, :varnanme ...]

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ |napure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

Sincev. 2.0, no column may be SET more than once in the same UPDATE statement.

The RETURNING clauseis not available in ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

L] L] L] L] L]

Changed SET semantics

Changedin: 2.5

95

DML statements

Description: In previous Firebird versions, if multiple assignmentswere donein the SET clause, the new column
values would become immediately available to subsequent assignments in the same clause. That is, in a clause
like*set a=3, b=a’, b would be set to 3, not to a's old value. Thisnon-standard behaviour has now been corrected.
In Firebird 2.5 and up, any assignmentsin the SET clause will use the old column values.

Example:

Given table TSET:

>

N
co ' w

the following statement:

update tset set a=5, b=a

will change its state to

>

oo
NER T

In versions prior to Firebird 2.5, this would have been:

>

o1 ot
ool '

Retaining the old behaviour: For alimited time, you can keep the old, non-standard behaviour by setting the
A dSet d auseSemant i cs parameter in firebird. conf to 1. This parameter will be deprecated and
removed in the future. If set, it will be used for all database connections made through the server.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

update MyTabl e
set NameBl obSp = ' Juan’
wher e NameBl obBr collate pt_br = "'Joao'

ORDER BY
Availablein: DSQL, PSQL

Added in: 2.0

96

DML statements

Description: UPDATE now alows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now allowsaPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ...
update Fruit F set soort = 'pisang' where ..
update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

RETURNING
Availablein: DSQL, PSQL
Addedin: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to return values from the updated row. The clause, if present, need not contain all the modified columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE triggers, but not those in AFTER triggers. OLD.f i el dnanme and NEW.f i el dnane may both
be used inthelist of columnsto return; for field names not preceded by either of these, the new valueisreturned.

Example:
updat e Schol ars
set firstname = 'Hugh', lastname = ' Pickering'
where firstnane = 'Henry' and | astnanme = 'Higgins'

returning id, old.lastnanme, new. | astnane

97

DML statements

Notes:
* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually

updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL
Addedin: 2.0
Description: Limitsthe amount of rows updated to a specified number or range.
Syntax:
ROAS <> [TO <n>]
<nP, <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

» |f m> thetotal number of rowsin the dataset, the entire set is updated.
* If m=0, no rows are updated.
e |[f m<O, anerror israised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

» If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e |[fm<lorn<1,anerrorisraised.

e If n =m1, no rows are updated.

e |[fn<ml, anerrorisraised.

ROWS can aso be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Availablein: DSQL, PSQL
Added in: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If aRETURNING clause is present and more than
one matching record is found, an error is raised.

98

DML statements

Syntax:

UPDATE OR | NSERT | NTO
{tabl enane | viewnane} [(<colums>)]
VALUES (<val ues>)
[MATCHI NG (<col umms>)]
[RETURNI NG <val ues> [I NTO <vari abl es>]]

<col ums> = colnane [, colname ...]
<val ues> = value [, value o]
<vari abl es> = :varname [, :varnane ...]

Restrictions

* No column may appear more than once in the update/insert column list.

« If thetable has no PK, the MATCHING clause becomes mandatory.

e The"INTO <vari abl es>" subclauseisonly availablein PSQL.

* When values are returned into the context variable NEW, this name must not be preceded by

acolon (“: 7).

Example:

update or insert into Cows (Nane, Number, Locati on)
val ues (' Suzy Creantheese', 3278823, 'Green Pastures')
mat chi ng (Nunber)
returning rec_id into :id;

Notes:

» Matchesaredetermined withISNOT DISTINCT, not withthe* =" operator. Thismeansthat one NULL matches
another.

» The optional RETURNING clause:

- ...may contain any or al columns of the target table, regardiess if they were mentioned earlier in the

statement, but also other expressions.
- ...may contain OLD and NEW quadlifiersfor field names; by default, the new field value is returned.

- ..returnsfield values as they are after the BEFORE triggers have run, but before any AFTER triggers.

99

Chapter 8

Transaction
control statements

RELEASE SAVEPOINT

Availablein: DSQL
Addedin: 1.5
Description: Deletes a named savepoint, freeing up all the resources it binds.
Syntax:
RELEASE SAVEPO NT nane [ONLY]
Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK

Availablein: DSQL, ESQL
Syntax:
ROLLBACK [WORK]
[TRANSACTI ON tr_nane]
[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nane | RELEASE]
» The TRANSACTION clauseisonly availablein ESQL.
» The RELEASE clauseisonly availablein ESQL, and is discouraged.

* RETAIN and TO are only available in DSQL.

ROLLBACK RETAIN
Availablein: DSQL

Added in: 2.0

100

Transaction control statements

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDBSSET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it was through the API call i sc_r ol | back_r et ai ni ng() .

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Addedin: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] nane
ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» Allimplicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL
Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions’.

Syntax:

SAVEPO NT <nane>

101

Transaction control statements

<name> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists aready within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPQOI NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

« All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint;

create table test (id integer);
conmit;

insert into test values (1);
conmit;

insert into test values (2);
savepoint y;

del ete fromtest

select * fromtest; -- returns no rows
rol I back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, al changes performed in this transaction are backed out via a
transaction-level savepoint and the transaction is then committed. This logic reduces the amount of garbage
collection caused by rolled back transactions.

102

Transaction control statements

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the
transaction if needed.

Tip

If you expect the volume of changesin your transaction to be large, you can specify the NO AUTO UNDO option
inyour SET TRANSACTION statement, or —if you usethe APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptionsin PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo dl actionsin aBEGIN...END block where an exception occurs;

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is aso bounded by automatic system savepaints.

SET TRANSACTION

Availablein: DSQL, ESQL
Changedin: 2.0

Description: Starts and optionally configures a transaction.

Syntax:

SET TRANSACTI ON
[NAME host var]
[READ VRI TE | READ ONLY]
[[1SOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COWM TTED [[NOQ RECORD_VERSION] }]
[WAIT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQY
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> <tabl e_spec> [, <table_spec> ...]

<t abl e_spec> tabl ename [, tablenane ...]

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

<dbhandl es> ::= dbhandle [, dbhandle ...]

103

Transaction control statements

» The NAME option is only available in ESQL. It must be followed by a previously declared and
initialized host-language variable. Without NAME, SET TRANSACTION applies to the default
transaction.

* TheUSING option isalso ESQL-only. It limits the databases that the transaction can accessto the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Addedin: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnor e_| i mbo TPB parameter, availableinthe API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT
Availablein: DSQL
Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its APl equivalent isthe new i sc_t pb_I ock_ti neout TPB
parameter.

NO AUTO UNDO
Availablein: DSQL, ESQL
Addedin: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction berolled back after al, other transactionswill pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

104

Transaction control statements

Note

NO AUTO UNDO is the SQL equivaent of thei sc_t pb_no_aut o_undo TPB parameter, available in the
API since InterBase times.

105

Chapter 9

PSQL statements

PSQL — Procedural SQL — is the Firebird programming language used in stored procedures, triggers and
executabl e blocks.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Availablein: PSQL
Added in: 1.0
Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))
as
begi n
for select Phr from Phrases into phrase do
begin
if (num< 1) then break
suspend;
num = num- 1;
end

106

PSQL statements

phrase = '*** Ready! ***';
suspend;
end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented

in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = '*** Ready! ***';”,

Important

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Availablein: PSQL
Addedin: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:
CLCSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE

Availablein: PSQL
Description: Declares a PSQL local variable.
Syntax:

DECLARE [VARI ABLE] varnane <var_spec>;

<var_spec>

<type> [NOT NULL] [<coll>] [<default>]
| CURSOR FOR (sel ect-statenent)

<t ype> = sql _datatype | [TYPE OF] domain | TYPE OF COLUW rel. col
<col | > = COLLATE col l ation
<defaul t > = {=| DEFAULT} val ue

» If sgl _dat at ype isatext type, it may include a character set.
* Obviously, aCOLLATE clauseisonly allowed with text types.

DECLARE ... CURSOR

Added in: 2.0

107

PSQL statements

Description: Declares anamed cursor and bindsit to itsown SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nane, rdb$systemflag fromrdb$rel ations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then |eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE”" clauseis alowed in the SELECT statement, but not required for a positioned update or

delete to succeed.
Make sure that declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

If you need a cursor to loop through an output set, it is amost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop
if it iszero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and alow you to operate several cursorsin parallel.

The SELECT statement may contain named SQL parameters, likein “sel ect nanme || :sfx from
names where nunber = :nuni. Each parameter must be a PSQL variable that has been declared
previoudy (thisincludes any infout params of the PSQL module). When the cursor is opened, the parameter
is assigned the current value of the variable.

Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. Asit is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization
Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional.

108

PSQL statements

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL local variables and input/output parameters can be declared with
a domain instead of a datatype. The TYPE OF modifier allows using only the domain's datatype and not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and
collation are always included.

Example:

create procedure MyProc (a int, f ternbool)
returns (b int, x type of bigfloat)
as
declare p int;
declare q int = 8;
decl are y stocknum default -1;
begi n
<very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains aready
defined in the database.)

Warning

If you change a domain's definition, existing PSQL code using that domain may become invalid. For
information on how to detect this, please read the note The RDB$VALID_BLRfield, near the end of thisdocument.

TYPE OF COLUMN in variable declaration

Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. Only thetypeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values
are never copied from the source column.

109

PSQL statements

Example:

create table cars (
make var char (20),
nodel varchar (20),
wei ght nureric(4),
t opspeed nuneric(3),
constrai nt uk_nake_nodel unique (rmake, nodel)

)

create procedure nmax_Kki netic_energy
(make type of colum cars. nake
nodel type of colum cars. nodel)
returns (nmax_e_kin doubl e precision)
as
decl are nass type of colum cars. wei ght;
decl are velocity type of columm cars.topspeed,
begi n
sel ect weight, topspeed fromcars
where nmake = :make and nodel = :node
into mass, velocity;
max_e kin = 0.5 * nass * velocity * velocity;
end

Warnings

» The collation of the source column is not always taken into consideration when comparisons (e.g. equality
tests) are made, even though it should. Thisis due to abug that has been fixed for Firebird 3.

* PSQL code using TYPE OF COLUMN may become invalid if the column's type is changed at a later time.
For information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document

COLLATE In variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, aCOLLATE clause is allowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure G nmeText
returns (txt char(32) character set utf8 collate unicode)

as

decl are sinbunao mnmytextdonain collate pt_br default 'nao';
begi n

<stunningly intelligent code here>
end

NOT NULL in variable declaration

Addedin: 2.1

Description: In Firebird 2.1 and above, a NOT NULL constraint is alowed in the declaration of PSQL local
variables and input/output parameters.

110

PSQL statements

Example:

create procedure Conmpute(a int not null, b int not null)
returns (outcone bigint not null)

as
decl are temp bigint not null;

begi n
<slightly disappointing code here>

end

EXCEPTION

Availablein: PSQL
Changedin: 1.5
Description: The EXCEPTION syntax has been extended so that the user can

a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on- nane> [cust om nessage]]

<exception-nane> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the
EXCEPTION command without any arguments. Outside such blocks, this“bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqglcode, ...);
excepti on;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:

exception ex_data_error 'You just |ost some val uabl e data'

111

PSQL statements

exception ex_bad _type 'Wong type for record with id "' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5
Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored

procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Availablein: PSQL
Addedin: 1.5
Changedin: 2.5

Description: EXECUTE STATEMENT takes a string argument and executes it as if it had been submitted as a
DSQL statement. If the statement returns data, the INTO clause assigns these to local variables. If the statement
may return more than one row of data, the “FOR ... DO” form must be used to create aloop.

Syntax (full):
<execute-statenent> :.:= EXECUTE STATEMENT <argunent >
[<option> ...]
[NTO <vari abl es>]

<l ooped- ver si on> .= FOR <execute-statenent> DO <psql - st at enent >

<ar gunent >

par am ess- st nt
| (param ess-stnt)
| (<stnt-with-parans>) (<param val ues>)

<stnt-wth-paranms> .= A statenment containing one or nore paraneters,
in one of these forns:
- nanmed: ':' + parammane, e.g. :a, :b, :size

- positional: each paramis designated by '?
Naned and positional paranmeters may not be m xed.

<par am val ues>
<naned- val ues>
<posi tional -val ues>

<naned- val ues> | <positional -val ues>
parammane : = val ue-expr [, paramane := val ue-expr
val ue-expr [, value-expr ...]

<option>

W TH { AUTONOMOUS| COMMON} TRANSACTI ON

112

PSQL statements

| WTH CALLER PRI VI LEGES

| AS USER user

| PASSWORD password

| ROLE role

| ON EXTERNAL [DATA SOURCE] <connect-string>

<connect-string>
<host spec>

<t cpi p- host spec>
<net beui - host spec>

[<host spec>] path-or-alias

<t cpi p- host spec> | <net beui - host spec>
host nane:

\'\ host name\

<vari abl es> = [:]varnane [, [:]varnane ...]

<psql - st at enent > ::= A sinple or conpound PSQL statenent.

NOTI CE:

paranl ess-stnt, <stnt-with-parans>, user, password, role and <connect-string>
are string expressions. Wien given directly, i.e. as literal strings, they nust

be enclosed in single-quote characters.
The following paragraphs first explain the basic usage of EXECUTE STATEMENT as it has been since Firebird
1.5. After that, the new featuresin 2.5 are introduced.
No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax (partial):

EXECUTE STATEMENT <st at enent >

<statenment> ::= An SQ statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnt varchar(1024);

decl are variable paramint;

begi n
sel ect min(SonmeField) from SoneTabl e i nto param
stm = 'execute procedure '
| | ProcNane
[
| | cast(param as varchar(20))
[)"
execute statenment stnt;
end
Warning

Although thisform of EXECUTE STATEMENT can a so be used with all kinds of DDL strings (except CREATE/
DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL rule

in PSQL.

113

PSQL statements

One row of data returned
Thisform is used with singleton SELECT statements.

Syntax (partial):

EXECUTE STATEMENT <sel ect-statement> | NTO <var> [, <var> ...]

<sel ect-statenent> ::= An SQ statement returning at nost one row of data.
<var > = A PSQ variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane var char (100))
as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || TableName into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNane;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax (partial):

FOR EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]
DO <psql - st at enent >

<sel ect - st at enent > = Any SELECT statenent.
<var > ;= A PSQ variable, optionally preceded by “:”
<psql - st at emrent > = A sinple or compound PSQL st atenent.

Example:
create procedure Dynani cSanpl eThree

(Text Fi el d varchar (100),
Tabl eNane var char (100))

returns
(LongLi ne var char (32000))
as
decl are vari abl e Chunk varchar (100);
begi n
Chunk = "'";
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ";
suspend;

114

PSQL statements

end

Improved performance
Changedin: 2.5

Description: In previous versions, if EXECUTE STATEMENT occurred in aloop, the SQL statement would be
prepared, executed and rel eased upon every iteration. In Firebird 2.5 and above, such astatement isonly prepared
once, giving a huge performance benefit.

WITH {AUTONOMOUS|COMMON} TRANSACTION
Added in: 2.5

Description: Traditionaly, the executed SQL statement always ran within the current transaction, and thisis
till the default. WITH AUTONOMOUS TRANSACTION causes a separate transaction to be started, with the same
parameters asthe current transaction. It will be committed if the statement runsto completion without errorsand
rolled back otherwise. WITH COMMON TRANSACTION uses the current transaction if possible. If the statement
must run in a separate connection, an aready started transaction within that connection is used, if available.
Otherwise, anew transaction is started with the same parameters asthe current transaction. Any new transactions
started under the “COMMON” regime are committed or rolled back with the current transaction.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at enment
W TH { AUTONOMOUS| COVMMON} TRANSACTI ON
[...other options...]
[NTO <vari abl es>]
[DO psql - st at enent]

WITH CALLER PRIVILEGES
Added in: 2.5

Description: By default, the SQL statement is executed with the privileges of the current user. Specifying WITH
CALLERPRIVILEGES addsto thisthe privilegesof thecalling SPor trigger, just asif the statement were executed
directly by the routine. WITH CALLER PRIVILEGES has no effect if the ON EXTERNAL clause is aso present.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at enent
W TH CALLER PRI VI LEGES
[...other options...]
[NTO <vari abl es>]

[DO psql - st at enent]

ON EXTERNAL [DATA SOURCE]

Added in: 2.5

115

PSQL statements

Description: With ON EXTERNAL DATA SOURCE, the SQL statement is executed in a separate connection to
the same or another database, possibly even on another server. If the connect stringisNULL or ' ' (empty string),
the entire ON EXTERNAL clauseis considered absent and the statement is executed against the current database.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at ement
ON EXTERNAL [DATA SOURCE] <connect-string>
[AS USER user]
[PASSWORD passwor d]
[ROLE rol €]
[...other options...]
[NTO <vari abl es>]
[DO psql - st at enent |

<connect -string>
<host spec>

<t cpi p- host spec>
<net beui - host spec>

[<host spec>] path-or-alias

<t cpi p- host spec> | <net beui - host spec>
host nare:

\'\ host nane\

NOTI CE:
sql -statenent, user, password, role and <connect-string> are string
expressions. \Wien given directly, i.e. as literal strings, they nust

be encl osed in single-quote characters.

Connection pooling:

External connections made by statements WITH COMMON TRANSACTION (the default) will remain open
until the current transaction ends. They can be reused by subsequent calls to EXECUTE STATEMENT, but
only if the connect string is exactly the same, including case.

External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed.

Notice that statements WITH AUTONOMOUS TRANSACTION can and will reuse connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will
be |eft open after the statement has been executed. (It must be, because it has at least one uncommitted
transaction!)

Transaction pooling:

If WITH COMMON TRANSACTION isin effect, transactionswill be reused as much as possible. They will be
committed or rolled back together with the current transaction.

If WITH AUTONOMOUS TRANSACTION is specified, a fresh transaction will always be started for the
statement. This transaction will be committed or rolled back immediately after the statement's execution.

Exception handling: When ON EXTERNAL is used, the extra connection is aways made via a so-called
external provider, even if the connection is to the current database. One of the consequences is that you can't
catch exceptions the way you are used to. Every exception caused by the statement is wrapped in either
an eds_connection or an eds_statement error. In order to catch them in your PSQL code, you have to use
WHEN GDSCODE eds_connection, WHEN GDSCODE eds_statement or WHEN ANY . (Without ON EXTERNAL,
exceptions are caught in the usual way, even if an extra connection is made to the current database.)

Miscellaneous notes:

116

PSQL statements

» The character set used for the external connection is the same as that for the current connection.

» Two-phase commits are not supported.

» For authentication details, please look under ASUSER, PASSWORD and ROLE :: Authentication, below.

AS USER, PASSWORD and ROLE

Added in: 2.5

Description: Optionally, a user name, password and/or role can be specified under which the statement must
be executed.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at ement
AS USER user
PASSWORD password
ROLE rol e
[...other options...]
[NTO <vari abl es>]
[DO psql - st at enent]

NOTI CE:
sql -statenent, user, password and role are string expressions.
When given directly, i.e. as literal strings, they must be

encl osed in single-quote characters.

Authentication: How auser isauthenti cated and whether a separate connection isopened depends on the presence
and values of the parameters ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD and ROLE.

» If ON EXTERNAL is present, a new connection is always opened, and:

If a least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted with the
given parameter values (locally or remotely, depending on the connect string). No defaults are used for
missing parameters.

If all three are absent and the connect string contains no host name, then the new connection is established
ontheloca host with the same user and role as the current connection. Theterm 'local' means 'on the same
machine asthe server' here. Thisis not necessarily the location of the client.

If al three are absent and the connect string contains a host name, then trusted authentication is attempted
ontheremote host (again, remote from the POV of the server). If this succeeds, the remote OSwill provide
the user name (usually the OS account under which the Firebird process runs).

* |f ON EXTERNAL is absent:

If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current database is
opened with the given parameter values. No defaults are used for missing parameters.

If all three are absent, the statement is executed within the current connection.

Notice: If a parameter value is NULL or "' (empty string), the entire parameter is considered absent.
Additionally, ASUSER is considered absent if its value is equal to CURRENT_USER, and ROLE if it's equal to

117

PSQL statements

CURRENT_ROLE. The comparison is made case-sensitively; in most cases this means that only user and role
names given in all-caps can be equal tot CURRENT _USER or CURRENT_ROLE.

Parameterized statements

Added in: 2.5

Description: Since Firebird 2.5, the SQL statement to be executed may contain parameters. When [FOR]
EXECUTE STATEMENT is called, avalue must be provided for each parameter.

Syntax (partial):

[FOR]
EXECUTE STATEMENT (<par anet eri zed- st at enent >)
[...options...]
[NTO <vari abl es>]

[DO psql - st at enent]

An SQL st at ement
<naned- par anps

<par anet eri zed- st at enent >

<naned- par anp
<posi tional - par an>

. par ammane
?

<par am assi gnnent s>
<naned- assi gnnment s>
<posi tional - assi gnnent s>

par amane :
value [, value ..

NOTI CE
<paraneterized-statenent> is a string expression
i.e. as aliteral string, it

Examples:

With named parameters:

decl are |icense_num var char (15);
decl are connect _string varchar (100);
decl are stnt varchar (100)

"select license fromcars where driver
begi n

sel ect connstr from databases where cust _id

<naned- assi gnnent s> |
val ue [,

-

:driver and | ocation

(<par am assi gnnent s>)

cont ai ni ng
or <positional - paranps

<posi tional - assi gnnent s>
paramane : = value ...]

When given directly,

must be encl osed in single-quote characters.

:loc';

:id into connect_string;

for select id fromdrivers into current _driver do

begin
for select location fromdriver_|ocations
where driver _id scurrent _driver
into current | ocation do
begi n

execute statenment (stnt) (driver
| oc :
on external connect_string
into license _num

current _driver,
current | ocation)

118

PSQL statements

The same code with positiona parameters:

decl are |icense_num varchar (15);
decl are connect _string varchar(100);
decl are stnt varchar(100) =
"select license fromcars where driver = ? and location = ?'
begi n

sel ect connstr from databases where cust_id = :id into connect_string;

for select id fromdrivers into current_driver do

begi n
for select location fromdriver_| ocations
where driver_id = :current_driver
into current | ocation do
begi n

execute statement (stnt) (current_driver, current_|ocation)
on external connect_string
into license _num

Notes: Some thingsto be aware of:

When a statement has parameters, it must be placed in parentheses when EXECUTE STATEMENT is called,
regardiess whether it is given directly as a string, as a variable name, or by another expression.

Named parameters must be preceded by a colon (“:”) in the statement itself, but not in the parameter
assignments.

Each named parameter may occur several timesin the statement, but only once in the assignments.

Each named parameter must be assigned a value when EXECUTE STATEMENT is called; the assignments
can be placed in any order.

The assignment operator for named parametersis*“: =", not “=" likein SQL.

With positional parameters, the number of values supplied must exactly equal the number of parameters
(question marks) in the statement.

Caveats with EXECUTE STATEMENT

Thereis no way to validate the syntax of the enclosed statement.
There are no dependency checks to discover whether tables or columns have been dropped.

Even though the performance in loops has been significantly improved in Firebird 2.5, execution is still
considerably slower than that of statements given directly.

Return values are strictly checked for datatype in order to avoid unpredictabl e type-casting exceptions. For
example, thestring' 1234" would convert to an integer, 1234, but ' abc' would give aconversion error.

All in all, this feature is meant to be used very cautiously and you should always take the above factors into
account. If you can achieve the same result with PSQL and/or DSQL, then thisis nearly always preferable.

119

PSQL statements

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Availablein: PSQL
Added in: 2.0
Description: Fetchesthe next datarow from acursor'sresult set and storesthe column valuesin PSQL variables.
Syntax:
FETCH cursornane INTO [:]varnane [, [:]varnane ...];
Notes:

e The ROW COUNT context variable will be 1 if the fetch returned a data row and O if the end of the set has
been reached.

* You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

120

PSQL statements

Syntax:

FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSCR nane]

DO
<psql -stnt >

<sel ect-stnt> A val id SELECT st atenent.

<var > = A PSQL variable nane, optionally preceded by “:”

<psql - st nt > = A single statement or a block of PSQ. code.

» The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be a PSQL variable that has

been declared previoudly (this includes any in/out params of the PSQL module).

o Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. And as it is
currently not strictly defined, it may also change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do
begi n
sm= aa + bb
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$relation_nane fromrdb$rel ati ons
into :relation
do
begi n
for select rdb$field position + 1, rdb$field _nane
fromrdb$rel ation_fields
where rdb$rel ation_nane = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end

121

PSQL statements

end
end

AS CURSOR clause

Availablein: PSQL

Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) withinthe FOR SELECT loop in order to update or delete the current row. Thisfeaturewas already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n
if (town = towntodel ete)
then delete fromtowns where current of tcur
el se suspend;
end
end
Notes:

* A “FOR UPDATE" clause is allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make sure that cursor names defined here do not clash with any names created earlier on in DECLARE
CURSOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

IN AUTONOMOUS TRANSACTION

Availablein: PSQL

Addedin: 2.5

Description: Code running in an autonomous transaction will be committed immediately upon successful
compl etion, regardless of how the parent transaction finishes. Thisisuseful if you want to make surethat certain
actions will not berolled back, even if an error israised later.

Syntax:

I N AUTONOMOUS TRANSACTI ON DO <psql - st at enent >

122

PSQL statements

Example:

create trigger tr_connect on connect

as

begi n
-- make sure |l og nessage is al ways preserved:
i n autononous transaction do

insert into log (nsg) values ('User ' || current_user || ' connects."');
if (current_user in (select usernane from bl ocked_users)) then
begi n

-- again, log nessage nust be preserved and event posted, so:
i n aut ononobus transaction do

begi n
insert into log (msg) values ('User ' || current_user || ' refused.');
post _event ' Connection attenpt by bl ocked user.';

end

-- now we can safely except:
excepti on ex_baduser;
end
end
Notes:
» Autonomous transactions have the same isolation level as their parent transaction.

» Because the autonomous transaction is completely independent of its parent, care must be taken to avoid
deadlocks.

 If an exception occurs within the autonomous transaction, the work will be rolled back.

LEAVE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel
argument introduced in Firebird 2.0, LEAVE can break out of surrounding loops as well. Execution continues
with the first statement after the outermost terminated loop.

Syntax:
[1abel :]
{FOR | WHLE} ... DO

(possibly nested | oops, with or wi thout |abels)
LEAVE [I abel];
Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of code reading “c = 0;”

123

PSQL statements

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=>b+ 1;
when any do
begi n
execute procedure log_error (current_tinmestanp, 'Error in B |oop');
| eave;
end
end
c = 0;

The next example uses labels. “Leave LoopA’ terminates the outer loop, “l eave LoopB’ the
inner loop. Noticethat aplain “l eave” would aso suffice to terminate the inner loop.

stm1l = 'select Name from Farns';
LoopA:
for execute statenent :stml into :farmdo
begi n
stnt2 = 'select Nanme from Animal s where Farm= """
LoopB:
for execute statenent :stnt2 || :farm|] '"''" into :animl do
begin
if (animal = 'Fluffy') then | eave LoopB
else if (animal = farn) then | eave LOOpA;
el se suspend,;
end
end

OPEN cursor

Availablein: PSQL
Added in: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:
OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

124

PSQL statements

Subqueries as PSQL expressions

Changedin: 2.5

Description: Previously, subqueries could not be used as value expressions in PSQL, even if they returned a
singlevalue. Thismadeit necessary to use SELECT ... INTO, often assigning the result to avariable that wouldn't
have been necessary otherwise. Firebird 2.5 and up support the direct use of scalar subqueries as if they were
simple value expressions.

Examples:

Constructions like the following are now valid PSQL:

var = (select ... from...);

if ((select ... from...) = 1) then ...

if (1 =any (select ... from...)) then ...
if (1in (select ... from...)) then ...

Of coursg, inthefirst two examples you haveto be sure that the SELECT doesn't return multiple rows!

UDFs callable as void functions

Changedin: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning the result value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of coursethis
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF valid again for view cursors

Changedin: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view
cursors. In Firebird 2.1, with itsimproved view validation logic, this restriction has been lifted.

125

Chapter 10

Security and access control

ALTER ROLE

Availablein: DSQL
Added in: 2.5

Description: Currently, ALTER ROLE's only purpose is to control the automatic mapping of the RDBSADMIN
role to Windows administrators. For afull discussion, see RDB$SADMIN and AUTO ADMIN MAPPING.

Syntax:

ALTER ROLE RDB$ADM N { SET| DROP} AUTO ADM N NMAPPI NG

GRANT and REVOKE

GRANTED BY
Availablein: DSQL
Addedin: 2.5

Description: When a privilege is granted, it is normally stored in the database with the current user as the
grantor. With the GRANTED BY clause, the user who grants the privilege can have someone el se registered as
the grantor. When GRANTED BY is used with REVOKE, the privilege (registered as) granted by the named user
will be removed. To make migration from certain other RDBM Ses easier, the non-standard AS is supported as
asynonym of GRANTED BY.

Access; Use of the GRANTED BY clauseisreserved to:

The database owner;

SYSDBA,;

anybody who has the RDB$SADMIN rolein the database and specified it while connecting;

if AUTO ADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

Even the owner of the role can't use GRANTED BY if heisn't in the above list.

Syntax:

GRANT

126

Security and access control

{<privileges> ON <object> | role}
TO <gr ant ees>

[WTH { GRANT| ADM N} OPTI ON|

[{ GRANTED BY | AS} [USER] grantor]

REVOKE
[{ GRANT| ADM N} OPTI ON FOR]
{<privileges> ON <object> | role}
FROM <gr ant ees>
[{ GRANTED BY | AS} [USER] grantor]

(These are not the compl ete GRANT and REV OK E syntaxes, but they are completeasfar asGRANTED
BY isconcerned.)

Example:
-- connected as dat abase owner BOB:

create rol e digger;

grant digger to francis;

grant digger to fred;

grant digger to frank with adm n option granted by fritz;
conmi t;

revoke digger from fred;

-- XK

revoke adm n option for digger fromfrank;

-- error: "BOBis not grantor of Role on DI GGER to FRANK. "
revoke admn option for digger fromfrank granted by fritz;
-- XK

revoke di gger from frank

-- error: "BOBis not grantor of Role on DI GGER to FRANK. "
conmi t;

-- exit BOB, enter FRI TZ:

revoke di gger from frank;

-- XK

revoke di gger fromfrancis;

-- error: "FRITZ is not grantor of Role on DIGGER to FRANCI S. "
revoke digger fromfrancis granted by bob;

-- error: "Only SYSDBA or dat abase owner can use GRANTED BY cl ause”
conmi t;

Note: Please notice that a GRANT or ADMIN option is just a flag in the privilege record; it does not have a
separate grantor. So thisline:

grant digger to frank with adm n option granted by fritz

does not mean “Grant digger to Frank, and grant the admin option in Fritz's name”, but “Grant digger to Frank
with admin option — all in Fritz's name”.

REVOKE ALL ON ALL
Availablein: DSQL

Added in: 2.5

127

Security and access control

Description: Revokes al privileges (including role memberships) on all objects from one or more users and/or
roles. Thisisaquick way to “clean up” when auser has | eft the system or must be locked out of the database.

Syntax:
REVOKE ALL ON ALL FROM <grantee> [, <grantee> ...]
<grantee> ::= [USER] username | [ROLE] rol enane
Example:
revoke all on all from buddy, peggy, sue

Notes:

» Wheninvoked by aprivileged user (the database owner, SY SDBA or anyone whose CURRENT_ROLE isRDB
$ADMIN), al privileges are removed regardless of the grantor. Otherwise, only those privileges granted by
the current user are removed.

* The GRANTED BY clauseis not supported.

» Thisstatement cannot be used to revoke privilegesfrom stored procedure, trigger or view grantees. (Privileges
ON such objects are removed, of course.)

REVOKE ADMIN OPTION
Availablein: DSQL
Addedin: 2.0

Description: Revokes apreviously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multipleroles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-list> FROM <grantee-|ist>
<role-list>

<grantee-list>
<grant ee>

role [, role ...]
[USER] <grantee> [, [USER] <grantee> ...]
usernane | PUBLIC

Example:
revoke admin option for manager from john, paul, george, ringo

If auser has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

The RDB$SADMIN role

Added in: 2.5

128

Security and access control

Description: Firebird 2.5 introduces the RDBSADMIN system role, which is predefined in every database.
Granting someone the RDB$ADMIN role in a database gives him or her SYSDBA rights in that database only.
In anormal database, this means full control over al objects. In the security database, it means the ability to
create, ater and drop user accounts. In both cases, the grantee can always pass the role on to others. In other
words, “WITH ADMIN OPTION” is built in and need not be specified.

In normal databases

Granting the RDB$SADMIN role in a normal database
In aregular database, the RDB$SADMIN role can be granted and revoked with the usual syntax:

GRANT RDB$ADM N TO user nane
REVOKE RDB$ADM N FROM user nane

Grantors can be;

* The database owner;

e SYSDBA;

» anybody who has the RDB$SADMIN role in the database and specified it while connecting;

» if AUTOADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

Using the RDB$ADMIN role in a normal database

To make use of his RDB$SADMIN privileges, the grantee simply specifies the role when connecting to the
database.

In the security database

Granting the RDB$ADMIN role in the security database

Since nobody can connect to the security database, the GRANT and REVOKE statements cannot be used here.
Instead, the RDBSADMIN role is granted and revoked with the new SQL user management commands:

CREATE USER newuser PASSWORD ' password' GRANT ADM N RCLE

ALTER USER exi stinguser GRANT ADM N ROLE
ALTER USER exi stinguser REVOKE ADM N ROLE

Please notice that GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not GRANT and REVOKE statements.
They are three-word parameters to CREATE and ALTER USER.

Alternatively, gsec can be used with the - adni n parameter:
gsec -add newuser -pw password -admin yes
gsec -nD existinguser -admn yes

gsec -mo existinguser -adnin no

Depending on the situation, more parameters may be needed when invoking gsec, e.g. - user and - pass, or
-trusted.

Grantors can be:

129

Security and access control

* SYSDBA;

» anybody who has the RDB$ADMIN role in the security database and specified it while connecting (or while
invoking gsec);

» if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who connected (or
invoked gsec) using trusted authentication without specifying arole.

Using the RDB$ADMIN role in the security database

To manage user accounts through SQL, the grantee must specify the RDBSADMIN role when connecting. But
this poses a problem, because nobody can connect to the security database. The solution isthat the user connects
to another — regular — database where he also has RDB$ADMIN rights. He specifies the role when connecting
to the regular database, and can then give any SQL user management command. It's not the most elegant of
solutions, but it is the only way. If there isn't aregular database where the grantee has the RDBSADMIN role,
the SQL route is blocked.

To perform user management with gsec, the grantee must provide the extra parameter - r ol e r db$admi n.

AUTO ADMIN MAPPING

Platform: Windows only
Added in: 2.5

Description: In Firebird 2.1, Windows administrators would automatically receive SY SDBA privileges if they
used trusted authentication to connect to the server. In Firebird 2.5, this is no longer the case. Whether
administrators have automatic SY SDBA rights now depends on the setting of AUTO ADMIN MAPPING. Thisis
a per-database switch which is off by default. If AUTO ADMIN MAPPING is on, it will take effect whenever
a Windows administrator: a) connects using trusted authentication, and b) does not specify any role when
connecting. After a successful “auto admin” connect, the current role is set to RDBSADMIN.

In normal databases
To turn the automatic mapping on and off in aregular database:

ALTER ROLE RDB$ADM N SET AUTO ADM N MAPPI NG
ALTER ROLE RDB$ADM N DROP AUTO ADM N MAPPI NG

These statements must be issued by a user with sufficient rights, that is:

* The database owner;

* SYSDBA;

» anybody who has the RDBSADMIN role in the database and specified it while connecting;

» if AUTOADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

In normal databases, the status of AUTO ADMIN MAPPING is checked at connect time only. If an administrator
hasthe RDB$ADMIN role because the mapping was on when he connected, hewill keep that role for the duration
of the connection, even if he or someone else turns off the mapping in the meantime. Likewise, setting AUTO
ADMIN MAPPING on will not change the current role to RDB$ADMIN for administrators who were already
connected.

130

Security and access control

In the security database

There are no SQL statements to turn the automatic mapping on and off in the security database. Instead, gsec
must be used:

gsec -mappi ng set
gsec -nmapping drop

Depending on the situation, more parameters may be needed when invoking gsec, e.g. - user and - pass, or
-trusted.

These commands can be given by:

* SYSDBA;
* if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who invokes gsec
using trusted authentication without specifying arole.

Unlike the case with regular databases, users connecting with the RDB$ADMIN role cannot turn AUTO ADMIN
MAPPING on or off in the security database. Also notice that the Windows administrator in the second listitem
can only turn the mapping off. In doing so, he shuts off the very mechanism that gave him access in the first
place, so he won't be able to turn it back on again. (Even in an interactive gsec session, the new setting takes
effect immediately.)

SQL user management commands

Availablein: DSQL
Added in: 2.5

Description: Firebird 2.5 and up provide SQL statements for user account management. Except in one case,
they are only available to the following privileged users:

e SYSDBA;

* Any user who has been granted the RDB$SADMIN rolein the security database and at |east one other database.
The user must specify the role when connecting to the database.

* If AUTO ADMIN MAPPING is on for the security database: any Windows administrator connected to any
database using trusted authentication without specifying arole. Whether AUTO ADMIN MAPPING isoninthe
connection database is unimportant.

Non-privileged users can only use ALTER USER, to change their own account details.

CREATE USER
Description: Creates a Firebird user account.
Syntax:
CREATE USER user nane PASSWORD ' password’

[FI RSTNAME ' firstnanme']
[M DDLENANE ' ni ddl enane']

131

Security and access control

[LASTNAME ' | ast nange']
[GRANT ADM N RCLE]

GRANT ADMIN ROLE givesthe new user the RDB$ADMIN role in the security database. This alows
him to manage user accounts, but doesn't give him any special privileges in regular databases. For
more information, see The RDB$ADMIN role.

Examples:
create user bigshot password 'buckshot'

create user john password 'fYe_3Ksw firstnanme 'John' |astnane ' Doe'
create user nmary password 'lanb_chop' firstnane 'Mary' grant admin role

ALTER USER

Description: Alters details of a Firebird user account. Thisis the only account management statement that can
also be used by non-privileged users, in order to change their own account details.

Syntax:
ALTER USER user nane
[PASSWORD ' password']
[FI RSTNAME ' firstnane']
[M DDLENAME ' mi ddl enane']
[LASTNAME ' | ast nane']
[{ GRANT| REVOKE} ADM N ROLE]

-- At least one of the optional paraneters nust be present.
-- GRANT/REVOKE ADM N ROLE is reserved to privil eged users.

Examples:

al ter user bobby password '67-U T_@&' grant adnin role
alter user dan firstname 'No_Jack' |astname 'Kennedy'
al ter user dunbbell revoke admin role

DROP USER

Description: Removes a Firebird user account.
Syntax:

DROP USER user nane
Example:

drop user tinmy

132

Chapter 11

Context variables

CURRENT CONNECTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Changedin: 2.1
Description: CURRENT _CONNECTI ON contains the unique identifier of the current connection.
Type: INTEGER
Examples:
sel ect current _connection from rdb$dat abase
execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTI ONis stored on the database header page and reset to 0 upon restore. Since
version 2.1, it isincremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As aresult, CURRENT_CONNECTI ON now indicates the number of connections
since the creation — or most recent restoration — of the database.

CURRENT_ROLE

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT _ROLE is a context variable containing the role of the currently connected user. If there
isno active role, CURRENT _ROLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER)
t hen exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

CURRENT_RCOLE alwaysrepresentsavalid role or NONE. If auser connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

133

Context variables

CURRENT_TI ME

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT _TI MVE returns the current server time. In versions prior to 2.0, the fractional part used
to be dways*“. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
aprecision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0] 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

select current _time fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current _tinme(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

* Unlike CURRENT _TI ME, the default precision of CURRENT _TI MESTAMP has changed to 3 decimals. Asa
result, CURRENT_TI MESTAMP isno longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless
you explicitly specify a precision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI ME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need aprogressing value in PSQL — e.g. to measure
timeintervals—use' NOW with afull cast (not shorthand syntax).

CURRENT _TI MESTAMP

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI MESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part used to bealways*®. 0000”, giving an effective precision of O decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP

134

Context variables

Syntax:

CURRENT_TI MESTAMP [(precision)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current _timestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

 The default precision of CURRENT _TIME is «ill O decimals, so in Firebird 20 and up
CURRENT _TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless you
explicitly specify a precision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI MESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain

constant throughout the duration of the outermost module. If you need a progressing valuein PSQL —e.g. to
measure time intervals—use' NOW with afull cast (not shorthand syntax).

CURRENT _TRANSACTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT _TRANSACTI ON contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transaction

The value of CURRENT _TRANSACTI ON is stored on the database header page and reset to O upon restore. It
isincremented with every new transaction.

CURRENT USER

Availablein: DSQL, PSQL

Addedin: 1.0

135

Context variables

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custonmers before insert as
begi n
New. added_by = CURRENT_USER;
New. pur chases = O0;
end

DELETI NG

Availablein: PSQL
Added in: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of aDELETE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:
if (deleting) then
begi n
insert into Renoved Cars (id, nake, nodel, renpved)

val ues (old.id, old.mke, old.nodel, current_tinestanp);
end

GDSCODE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: In a“WHEN ... DO” error handling block, the GDSCODE context variable contains the numerical
representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error
handlers, GDSCODE is always 0. Outside PSQL it doesn't exist at al.

Type: INTEGER

Example:

when gdscode grant_obj notfound, gdscode grant fld_notfound,
gdscode grant _nopriv, gdscode grant_nopriv_on_base

136

Context variables

do

begi n
execute procedure |og_grant_error(gdscode);
exit;

end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the
GDSCODE context variableisan INTEGER. If you want to compare it against a certain error, you haveto usethe
numeric value, e.g. 335544551 for grant_obj_notfound.

| NSERTI NG

Availablein: PSQL
Added in: 1.5

Description: Available in triggers only, | NSERTI NG indicates if the trigger fired because of an INSERT
operation. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. serial_num = gen_id(gen_serials, 1);
end

NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause a runtime exception.

" NOW

Availablein: DSQL, PSQL, ESQL

137

Context variables

Changedin: 2.0

Description: ' NOW isnot avariablebut astring literal. It is, however, special inthe sensethat when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000", giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
" NOW is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Type: CHAR(3)
Examples:

sel ect ' Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$database
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinestanp) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date ' Now from rdb$dat abase
select tinme 'now from rdb$dat abase
sel ect tinestanp ' NOW from rdb$dat abase

Notes:

* When used with CAST(), ' NOW always returns the actual date/time, even in PSQL modules, where
CURRENT_DATE, CURRENT_TI ME and CURRENT_TI MESTAMP return the same value throughout the
duration of the outermost routine. This makes ' NOW useful for measuring time intervals in triggers,
procedures and executabl e blocks.

* When used with the shorthand syntax, ' NOW isevaluated at parse time and the valueisfrozen for aslong as
the statement stays prepared — even across multiple executions of the prepared statement! This is something
to be aware of.

* Unless you really need progressing values in PSQL, or frozen values during multiple executions, reading
CURRENT_DATE, CURRENT_TI ME and CURRENT_TI MESTAMP is generally preferable to using ' NOW .
Be aware though that CURRENT_TI ME defaults to seconds precision; to get milliseconds precision, use
CURRENT_TI ME(3).

LD

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

138

Context variables

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — QLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
always return NULL ; writing to it will cause a runtime exception.

ROW COUNT

Availablein: PSQL
Added in: 1.5
Changed in: 2.0

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or executable
block.

Type: INTEGER
Example:

update Figures set Nunmber = 0 where id = :id;

if (row._count = 0) then

insert into Figures (id, Nunber) values (:id, 0);

Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is1if adatarow wasretrieved and O otherwise.
* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

e After aFETCH from a cursor, RON COUNT is 1 if a datarow was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is O after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE
Availablein: PSQL
Added in: 1.5

Changedin: 2.0

139

Context variables

Deprecated in: 2.5.1

Description: Ina“WHEN ... DO” error handling block, the SQL CODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER
Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se
Msg = ' Sonet hi ng bad happened!';
exception ex_custom Msg;
end

Important notice: SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status code.
Support for SQLCODE and WHEN SQLCODE will be discontinued in some future version of Firebird.

SQLSTATE

Availablein: PSQL
Added in: 2.5.1

Description: In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-character,
SQL-2003-compliant status code resulting from the statement that raised the error. Outside error handlers,
SQLSTATE isaways '00000'. Outside PSQL it isnot available at all.

Type: CHAR(5)
Example:

when any
do
begi n
Msg = case sqlstate
when ' 22003' then 'Nuneric val ue out of range.'
when '22012' then 'Division by zero.'
when ' 23000' then 'Integrity constraint violation.'

el se ' Sonet hi ng bad happened! SQ.STATE = ' || sqlstate
end;
exception ex_custom Msg;
end
Notes:

* SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will disappear in
some future version.

140

Context variables

* Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. Y ou have to use WHEN ANY and test
the SQLSTATE variable within the handler.

» Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass. Classes 00
(successful completion), 01 (warning) and 02 (no data) represent completion conditions. Every status code
outside these classes is an exception. Because classes 00, 01 and 02 don't raise an error, they won't ever show
up inthe SQLSTATE variable.

» For acomplete listing of SQLSTATE codes, consult the Appendix to the Firebird 2.5 Release Notes.

UPDATI NG

Availablein: PSQL
Added in: 1.5

Description: Available in triggers only, UPDATI NG indicates if the trigger fired because of an UPDATE
operation. Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

141

http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates

Chapter 12

Operators and predicates

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like“A <> NULL”,“B + NULL” or “NULL < ANY(...)” would be rejected by the parser.
Now they are alowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practical purpose whatsoever.

In particular, don't try to determine (non-)nullness of a field or variable by testing with “= NULL” or “<>
NULL”. Alwaysuse“l S [NOT] NULL”".

Predicates. The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

| (string concatenator)

Availablein: DSQL, ESQL, PSQL

Text BLOB concatenation

Changedin: 2.1

Description: Since Firebird 2.1 the concatenation operator supports BLOBs of any length and any character set.
If a mixture of BLOBs and non-BLOBS is involved, the result is a BLOB. If both text and binary BLOBS are
involved, the result is abinary BLOB.

Result type VARCHAR or BLOB

Changedin: 2.0, 2.1

Description: Before Firebird 2.0, the result type of string concatenations used to be CHAR(n). In Firebird 2.0
this was changed to VARCHAR(N). As aresult, the maximum length of a concatenation outcome became 32765
instead of 32767. In Firebird 2.1 and up, if at least one of the operands is a BLOB, the result is a'so a BLOB

142

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

and the maximum doesn't apply. For non-BLOB concatenationsthe result isstill VARCHAR(n) with amaximum
of 32765 bytes.

Overflow checking

Changedin: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767

bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0
Description: The ALL predicate now allowsaNULL asthetest value. Notice that this bringsno practical benefits.

In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is*=", the predicate will not returnt r ue, but NULL.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0
Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no

practical benefits. In particular, aNULL test value will not be considered equal to a NULL in the subquery result
Set.

UNION as subselect

Changed in: 2.0

143

Operators and predicates

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)” will not returnt r ue and “NULL NOT
IN (..., NULL, ..., ...)" will not returnf al se.

UNION as subselect

Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean
Syntax:

opl IS [NOT] DI STI NCT FROM op2
Examples:

sel ect id, nanme, teacher from courses
where start_day is not distinct fromend_day

if (New. Job is distinct fromd d. Job)
t hen post_event 'job_changed';

IS[NOT] DISTINCT FROM awaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

144

Operators and predicates

Table 12.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand Results with the different operators
characteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NULL true NULL fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Availablein: DSQL, PSQL
Added in: 2.0
Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.
Syntax:
NEXT VALUE FOR sequence- nane
Example:

new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SIMILAR TO

Availablein: DSQL, PSQL
Added in: 2.5
Description: SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other

languages, the pattern must match the entire string in order to succeed — matching a substring is not enough. If
any operand isNULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

145

Operators and predicates

Result type: Boolean
Syntax: SMILARTO:
string-expression [NOT] SIMLAR TO <pattern> [ESCAPE <escape- char>]

an SQL regul ar expression
a single character

<pattern>
<escape- char >

Syntax: SQL regular expressions: The following syntax defines the SQL regular expression format. It is a
complete and correct top-down definition. It is also highly formal, rather long and probably perfectly fit to
discourage everybody who hasn't already some experience with regular expressions (or with highly formal,
rather long top-down definitions). Feel free to skip it and read the next section, Building regular expressions,
which uses a bottom-up approach, aimed at the rest of us.

<regul ar expressi on> =

<regul ar ternp
<regul ar factor>

<quantifier>

<nP, <n>

<regul ar prinmary>

<char act er >

<escaped character>

<speci al character>

<non- escaped character>

<character class>

<nmenber >, <non-nenber >
<range>
<pr edef i ned cl ass>

<pr edefi ned cl ass nane>

<regular term> ['|"' <regular terms ...]

<regul ar factor> ..

<regul ar primry> [<quantifier>]
?

| *
| +
| *{" <m [,[<n>]] "}

unsigned int, with <m> <= <n> if both present

<char act er >

| <character class>

| %

| (<regular expression>)

<escaped character>
| <non-escaped character>

<escape- char > <speci al character>
| <escape-char> <escape-char>

any of the characters []()]|"-+*% ?{

any character that is not a <special character>
and not equal to <escape-char> (if defined)

| '[" <nenber> ... ']’
| "[* <non-nenber> ... ']’
| '"[' <nmenber> ... '~'" <non-nenber> ... ']’

<char act er >
| <range>
| <predefined class>

<char act er >- <char act er >
"[:' <predefined class nanme> ':]'
ALPHA | DAT

UPPER | LOVER |

146

Operators and predicates

| ALNUM | SPACE | WHI TESPACE

Building regular expressions

Characters

Within regular expressions, most characters represent themselves. The only exceptions arethe special characters
below:

[T ¢)Yy |l ~-+*%_7?{
...and the escape character, if it is defined.

A regular expression that doesn't contain any special or escape characters only matches strings that are identical
toitself (subject to the collation in use). That is, it functions just like the “=" operator:

"Apple' sinmilar to 'Apple' -- true

"Apples' simlar to 'Apple' -- fal se

"Apple' similar to ' Apples' -- fal se

"APPLE' sinilar to ' Apple' -- depends on collation
Wildcards

The known SQL wildcards _ and %match any single character and a string of any length, respectively:

"Birne' sinmilar to 'B _rne' -- true
"Birne' simlar to 'B_ne' -- false
"Birne' simlar to ' B%e' -- true
"Birne' simlar to 'Bir%e% -- true
"Birne' simlar to 'Birr%e' -- false

Notice how %also matches the empty string.

Character classes

A bunch of characters enclosed in brackets define a character class. A character in the string matches aclassin
the pattern if the character is a member of the class:

"Citroen' simlar to 'Cit[arju]oen' -- true
"Citroen' simlar to "C[tr]oen' -- fal se
"Citroen' simlar to "G [tr][tr]oen' -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises the two
endpoints and al the charactersthat lie between them in the active collation. Ranges can be placed anywherein
the class definition without special delimitersto keep them apart from the other elements.

"Datte’ similar to 'Dat[g-u]e’ -- true
'Datte' sinmilar to 'Dat[abg-uy]e' -- true
"Datte’ similar to 'Dat[bcg-km pwz]e' -- fal se

147

Operators and predicates

The following predefined character classes can also be used in a class definition:

[:ALPHA:]
Latin letters a..z and A..Z. With an accent-insensitive collation, this class a'so matches accented forms of
these characters.

[:DIGIT:]
Decimal digits0..9.

[:ALNUM:]
Union of [:ALPHA:] and [:DIGIT:].

[:UPPER]
Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:LOWER:]
Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:SPACE:]
Matches the space character (ASCII 32).

[:WHITESPACE:]
Matches vertical tab (ASCII 9), linefeed (ASCII 10), horizontal tab (ASCII 11), form feed (ASCII 12),
carriage return (ASCII 13) and space (ASCII 32).

Including apredefined class hasthe same effect asincluding all its members. Predefined classesare only allowed
within class definitions. If you need to match against a predefined class and nothing more, place an extra pair
of brackets around it.

"Erdbeere' similar to 'Erd[[: ALNUM]]eere’ -- true
"Erdbeere' similar to '"Erd[[:DIGT:]]eere' -- fal se
"Erdbeere' sinmilar to 'Erd[a[: SPACE:] b] eere' -- true
'Erdbeere’ simlar to [[:ALPHA]] -- fal se
'E simlar to [[:ALPHA]] -- true

If aclass definition starts with a caret, everything that follows is excluded from the class. All other characters
match:

" Franboi se' simlar to 'Fra[”ck-p]boise' -- fal se
'Franmboi se' simlar to 'Fr[”a][”a]boise’ -- false
"Franboise' simlar to 'Fra[?:DIAT:]]boise" -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret, except for
the elements that also occur after the caret:

"Grapefruit' simlar to 'Gap[a-ntf-i]fruit’ -- true
"Grapefruit' sinmlar to ' Gap[abcrxyz]fruit' -- fal se
"Grapefruit' simlar to ' Gap[abcrde]fruit’ -- fal se
"Grapefruit' sinmlar to ' Gap[aberde]fruit’ -- fal se
'3 simlar to '[[:DIAT:]"4-8]" -- true
'"6' simlar to '[[:DGET:]"4-8]" -- false

Lastly, the already mentioned wildcard “_" is a character class of its own, matching any single character.

148

Operators and predicates

Quantifiers

A question mark immediately following a character or class indicates that the preceding item may occur O or
1 timesin order to match:

"Hallon' simlar to 'Hal ?on' fal se
"Hallon' simlar to 'Hal?lon' true
"Hallon' simlar to '"Halll?on' true
"Hallon' simlar to "Hallll ?on' fal se
"Hallon' simlar to 'Hal x?lon' true
"Hallon' simlar to 'Ha-c]?lon[x-2]? true

An asterisk immediately following a character or class indicates that the preceding item may occur O or more
timesin order to match:

"I caque' simlar to 'lca*que' true
"l caque' simlar to 'lcar*que' true
"l caque' simlar to 'l[a-c]*que' true
"lcaque' simlar to ' _*' true
"lcaque' simlar to '"[[:ALPHA]]*' true
"lcaque' simlar to 'lca[xyz]*e' fal se

A plus sign immediately following a character or class indicates that the preceding item must occur 1 or more
timesin order to match:

"Jujube' simlar to 'Ju_+ true
"Jujube' simlar to 'Ju+jube' true
"Jujube' simlar to 'Jujuber+ fal se
"Jujube' simlar to 'J[]jux]+be' true
"Jujube' sililar to "J[[:DAT:]]+uj ube' fal se

If a character or class is followed by a number enclosed in braces, it must be repeated exactly that number of
timesin order to match:

"Kiwi' simlar to 'Ki{2}w' fal se
"Kiwi' simlar to "Kipw{2}i' true
"Kiwi' simlar to 'K[ipw{2}' fal se
"Kiwi' simlar to "K[ipw {3}’ true

If the number isfollowed by acomma, the item must be repeated at |east that number of timesin order to match:

"Linone' simlar to 'Li{2,}none' -- false
"Linone' simlar to 'Li{1,}none -- true
"Linmone' simlar to 'Li[nezoni{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than the first, then the
item must be repeated at least the first number and at most the second number of timesin order to match:

"Mandarijn' simlar to 'Ma-p]{2,5}rijn' -- true
"Mandarijn' simlar to 'Ma-p]{2, 3}rijn -- false
"Mandarijn' simlar to 'Ma-p]{2,3}tarijn -- true

The quantifiers ?, * and + are shorthand for { 0, 1},{0, } and{ 1, }, respectively.

149

Operators and predicates

OR-ing terms

Regular expression terms can be OR'ed with the| operator. A match is made when the argument string matches
at least one of the terms:

"Nektarin' simlar to 'Nek|tarin' -- fal se
"Nektarin' sinmlar to 'Nektarin|Persika' -- true
"Nektarin' simlar to 'M+| N + P_+ -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called subpatterns) by
placing them between parentheses. A subexpression is a regular expression in its own right. It can contain all
the elements allowed in aregular expression, and can also have quantifiers added to it.

"Orange' simlar to "Q(ralri|ro)nge' -- true
"Orange’ simlar to 'Q(r[a-e])+nge' -- true
"Orange’ simlar to "Q(ra){2, 4} nge' -- false
"Orange’ simlar to "Q(r(an|in)g|rong) ?e’ -- true

Escaping special characters

In order to match against acharacter that is special in regular expressions, that character hasto be escaped. There
is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' simlar to "P[~]+ \(P[*]+\)' escape '\’ -- true
"Pera [Pear]' simlar to 'P[»]+ #[P["]+#]' escape '# -- true
' Paron- Appl edryck' simlar to ' P%-A% escape '$' -- true
"Parondryck' similar to 'P%-A% escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

SOME

See ANY

150

Chapter 13

Aggregate functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Available in: DSQL, PSQL
Added in: 2.1
Changedin: 2.5

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group is empty), NULL is returned.

Result type: BLOB

Syntax:

LI ST ([ALL | DI STI NCT] expression [, separator])

* ALL (the default) results in all non-NULL values to be listed. With DISTINCT, duplicates are
removed, except if expr essi on isaBLOB.

* In Firebird 2.5 and up, the optional separ at or argument may be any string expression. This
makes it possible to specify e.g. asci i _char (13) asaseparator. (This improvement has also
been backported to 2.1.4.)

» Theexpressi on and separ at or arguments support BLOBS of any size and character set.
» Date/time and numerical arguments are implicitly converted to strings before concatenation.
e Theresult isatext BLOB, except when expr essi on isaBLOB of another subtype.

» The ordering of thelist valuesis undefined.

MAX()

Availablein: DSQL, ESQL, PSQL
Added in: IB

Changedin: 2.1

151

Aggregate functions

Description: MAX returns the maximum argument value in the group. If the argument is a string, thisis the
value that comes last when the active collation is applied.

Result type: Varies
Syntax:
MAX (‘expressi on)
 If thegroup is empty or contains only NULLS, the result isNULL.

» Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

MIN()

Availablein: DSQL, ESQL, PSQL
Added in: IB

Changedin: 2.1

Description: MIN returns the minimum argument value in the group. If the argument isastring, thisisthe value
that comes first when the active collation is applied.

Result type: Varies
Syntax:
M N (expression)
» |f thegroup isempty or contains only NULLS, the result is NULL.

» Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

152

Chapter 14

Internal functions

ABS()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the absolute value of the argument.
Result type: Numerical

Syntax:

ABS (nunber)

Important

If the external function ABS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the arc cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:
ACCS (nunber)
» Theresultisan anglein the range [0, #].

 If the argument is outside the range[-1, 1], NaN is returned.

Important

If the external function ACCS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

153

Internal functions

ASCIl_CHAR()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII character corresponding to the number passed in the argument.
Result type: [VAR]CHAR(1) CHARACTER SET NONE
Syntax:
ASCI | _CHAR (<code>)

<code> ::= an integer in the range [0..255]

Important

 If theexternal function ASClI | _ CHARisdeclared in your database, it will override the internal function. To
make the internal function available, DROP or ALTER the external function (UDF).

« |f you are used to the behaviour of the ASCI | _CHAR UDF, which returns an empty strlng if the argument

ASCIl_VAL()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII code of the character passed in.
Result type: SMALLINT
Syntax:
ASCI | _VAL (ch)
ch ::= a [VARJCHAR or text BLOB of nax. 32767 bytes

 If the argument is a string with more than one character, the ASCII code of the first character is
returned.

 If theargument is an empty string, O is returned.
» If theargument is NULL, NULL is returned.
* |If thefirst character of the argument string is multi-byte, an error israised. (A bugin Firebird 2.1—

2.1.3 and 2.5 causes an error to beraised if any character in the string is multi-byte. Thisis fixed
inversons2.1.4 and 2.5.1.)

154

Internal functions

I mportant

If the external function ASCI | _ VAL isdeclared in your database, it will overridetheinternal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

ASIN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returnsthe arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

ASI N (nunber)

» Theresult isan angle in the range [-#/2, #/2].

 If the argument is outside the range [-1, 1], NaN is returned.

I mportant

If the external function ASI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the arc tangent of the argument.

Result type: DOUBLE PRECISION
Syntax:

ATAN (nunber)

* Theresultisan angle in the range <-#/2, #/2>.

Important

If the external function ATAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

155

Internal functions

ATAN2()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.
Result type: DOUBLE PRECISION
Syntax:
ATANZ2 (y, Xx)
* Theresultisan anglein the range [-#, #].
* If x isnegative, theresultis#if y isO, and -#if y is-0.

» |If bothy and x are O, the result is meaningless. Starting with Firebird 3, an error will be raised
if both arguments are 0.

I mportant

If the external function ATANZ is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Notes:

» A fully equivalent description of thisfunctionisthefollowing: ATAN2(y, x) isthe angle between the positive
X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0) is
undefined.

* If x isgreater than 0, ATAN2(y, x) isthe same as ATAN(y/X).

 If both sine and cosine of the angle are already known, ATAN2(si n, cos) givesthe angle.

BIN_AND()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise AND operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N_AND (number [, nunber ...])

156

Internal functions

I mportant

If the external function Bl N_AND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_OR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise OR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N OR (nunber [, nunber ...])

Important

If the external function BI N_COR is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the externa function (UDF).

BIN_SHL()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a-2"b.

Result type: BIGINT

Syntax:

BI N SHL (nunber, shift)

BIN_SHR()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.

Result type: BIGINT

157

Internal functions

Syntax:
BI N_SHR (nunber, shift)

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the result of the bitwise XOR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N XOR (number [, nunber ...])

I mportant

If the external function BI N_XORis declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIT_LENGTH()

Availablein: DSQL, PSQL

Added in: 2.0

Changedin: 2.1

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less

than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logica” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Result type: INTEGER
Syntax:

BI T_LENGTH (str)

158

Internal functions

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'GuR di!') fromrdb$dat abase
-- returns 64: 0 and R take up one byte each in | S08859_1

select bit_length
(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 80: U and B take up two bytes each in UTF8
select bit_length
(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH()

CAST()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.0, 2.1, 2.5

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error israised.

Result type: User-chosen.
Syntax:
CAST (expression AS <target_type>)
<target _type> ::= sqgl_datatype
| [TYPE OF] donmin
| TYPE OF COLUW r el nane. col nane
Shorthand syntax:
Alternative syntax, supported only when casting a string literal to a DATE, TIME or TIMESTAMP;

dat atype 'date/timestring

This syntax was aready available in InterBase, but was never properly documented. Please notice:
The shorthand syntax is evaluated immediately at parse time, causing the value to stay the same
until the statement is unprepared. For datetime literalslike' 12- Cct - 2012" this doesn't make any
difference. But for the pseudo-variables' NOW , ' YESTERDAY' ,' TODAY' and' TOMORROW this
may not be what you want. If you need the value to be evaluated at every call, use CAST().

159

Internal functions

Examples:
A full-syntax cast:
sel ect cast ('12' || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'Ad’
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will
understand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'dd'
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 fromrdb$dat abase

The following table shows the type conversions possible with CAST.

Table 14.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR [VAR]CHAR
BLOB BLOB
Numeric types
DATE

TIME
TIMESTAMP

DATE [VAR]CHAR
TIME BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimesinformation islost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isinitself no guarantee that a conversion will succeed. “CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)”.

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

160

Internal functions

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast — shorthand casts are not supported.

Castingtoadomain or itstype: Firebird 2.1 and above support casting to adomain or its base type. When casting
toadomain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or the cast will
fail. Please be aware that a CHECK passesif it evaluatesto TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)

sel ect cast (2000 as quint) fromrdb$dat abase -- (1)
sel ect cast (8000 as quint) fromrdb$dat abase -- (2)
sel ect cast (null as quint) fromrdb$dat abase -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any
constraints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

sel ect cast (2000 as type of quint) fromrdb$database
sel ect cast (2000 as int) from rdb$dat abase

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domai n i s020 varchar(20) character set iso08859 1;

create domai n dunl 20 varchar (20) character set is08859 1 collate du_nl;
create table zinnen (zin varchar(20));

conmi t;

insert into zinnen values ('Deze');
insert into zinnen values ('Die');
insert into zinnen values ('die');
insert into zinnen values ('deze');

sel ect cast(zin as type of is020) from zi nnen order by 1;
-- returns Deze -> Die -> deze -> die

sel ect cast(zin as type of dunl20) from zi nnen order by 1;
-- returns deze -> Deze -> die -> D e

Warning

If a domain's definition is changed, existing CASTS to that domain or its type may become invalid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field,
near the end of this document.

Casting to a column'stype: In Firebird 2.5 and above, it is possible to cast expressions to the type of an existing
table or view column. Only the type itself is used; in the case of string types, thisincludes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (
s varchar (40) character set utf8 collate unicode_ci_ai

)

commit;

sel ect cast ('Jag har ménga vanner' as type of columm ttt.s) from rdb$dat abase;

161

Internal functions

Warnings

For text types, character set and collation are preserved by the cast — just as when casting to a domain.
However, dueto a bug, the collation is not always taken into consideration when comparisons (e.g. equality
tests) are made. In cases where the collation is of importance, test your code thoroughly before deploying!
This bug isfixed for Firebird 3.

If acolumn's definition isaltered, existing CASTsto that column'stype may becomeinvalid. If these CASTs
occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field, near
the end of this document

Casting BLOBs:. Successful casting to and from BLOBSs is possible since Firebird 2.1.

CEIL(), CEILING()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number greater than or equal to the argument.

Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEIL[ING (nunber)

Important

If the external function CEI LI NGis declared in your database, it will override the internal function CEILING
(but not CEIL). To make the internal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()

Availablein: DSQL, PSQL

Added in: 2.0

Changedin: 2.1

Description: Gives the length in characters of the input string.

Note

With arguments of type CHAR, thisfunction returnstheformal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

162

Internal functions

Syntax:

CHAR_LENGTH (str)
CHARACTER LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

sel ect char_length('Hello!') from rdb$database
-- returns 6

sel ect char_length(_iso8859 1 'G iR di!') from rdb$dat abase
-- returns 8

sel ect char_l ength

(cast (_is08859 1 'GuB di!' as varchar(24) character set utf8))
from r db$dat abase

-- returns 8; the fact that U0 and B take up two bytes each is irrel evant
sel ect char_length

(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))

from rdb$dat abase
-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH()

CHAR_TO_UUID()

Availablein: DSQL, PSQL
Added in: 2.5
Description: Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.
Result type: CHAR(16) CHARACTER SET OCTETS
Syntax:
CHAR TO UUI D (ascii_uuid)
ascii_uuid ::= a string of length 36 with:

* '-' (hyphen) at positions 9, 14, 19 and 24;
* valid hex digits at every other position.

Examples:

sel ect char_to_uui d(' AObF4E45- 3029- 2a44- D493- 4998c9b439A3') from r db$dat abase
-- returns AOBF4E4530292A44D4934998C9B439A3 (16-byte string)

sel ect char _to_uui d(' AObF4E45- 3029- 2A44- X493- 4998c9b439A3') from r db$dat abase
-- error: -Human readable UU D argunment for CHAR TO UU D rnust
- - have hex digit at position 20 instead of "X (ASCI| 88)"

163

Internal functions

Seealso: UUID_TO_CHAR(), GEN_UUID()

COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result isNULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N cknanme, FirstName, "M./Ms.") || " ' || LastName

as Ful | Nane
from Per sons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that tooisNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it triesto use the avail able data
to compose a full namethat is asinformal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the * nvl external
functions.

COS()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns an angle's cosine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:
CCS (angl e)

* Any non-NULL result is— obviously —in therange [-1, 1].

le4

Internal functions

I mportant

If the external function COS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:

CCSH (number)

* Any non-NULL result isin therange [1, INF].

I mportant

If the external function COSH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COT()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

COT (angl e)

I mportant

If the external function COT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

DATEADD()

Availablein: DSQL, PSQL

165

Internal functions

Addedin: 2.1
Changedin: 2.5

Description: Adds the specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to a date/time value. (The WEEK unitisnew in 2.5.)

Result type: DATE, TIME or TIMESTAMP
Syntax:
DATEADD (<ar gs>)

<ar gs> ;.= <anount> <unit> TO <dateti nme>
| <unit> <anount>, <datetime>

<anount >
<uni t>

an i nteger expression (negative to subtract)
YEAR | MONTH | WEEK | DAY

| HOUR | M NUTE | SECOND | M LLI SECOND
a DATE, TIME or TI MESTAMP expression

<dat eti nme>

» Theresult typeis determined by the third argument.

* With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller
than DAY were disallowed for DATES.)

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current _date)

dateadd (-6 hour to current _tine)

dat eadd (nonth, 9, DateO Conception)

dat eadd (-38 week to DateOfBirth)

dateadd (minute, 90, tine 'now)
dateadd (? year to date '11-Sep-1973')

DATEDIFF()

Available in: DSQL, PSQL
Addedin: 2.1
Changedin: 2.5

Description: Returnsthe number of years, months, weeks, days, hours, minutes, seconds or milliseconds el apsed
between two date/time values. (The WEEK unit isnew in 2.5.)

Result type: BIGINT
Syntax:
DATEDI FF (<ar gs>)

<ar gs> 1= <unit> FROM <nonent 1> TO <nonent 2>

166

Internal functions

| <unit>, <nonentl> <nmonent2>

<uni t> ::= YEAR | MONTH | WEEK | DAY
| HOUR | M NUTE | SECOND | M LLI SECOND
<monent N> ::= a DATE, TIME or TIMESTAMP expression

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

* With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, unitssmaller
than DAY were disallowed for DATES.)

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Computation:
» DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As aresult,

“datedi ff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
- “datediff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

|t does, however, look at all the bigger units. So:
“datedi ff (day, date '26-Jun-1908', date '11-Sep-1973")" returns 23818
» A negative result value indicates that monment 2 lies before monent 1.
Examples:
datedi ff (hour fromcurrent_tinestanp to tinestanp '12-Jun-2059 06: 00")
datedi ff (mnute fromtine '0:00" to current _tine)

datedi ff (nmonth, current_date, date '1-1-1900')
datedi ff (day fromcurrent _date to cast(? as date))

DECODE()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed
after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
isreturned.

Result type: Varies
Syntax:
DECODE (<test-expr>
<expr>, result

[, <expr> result ...]
[, defaultresult])

The equivalent CASE construct:

167

Internal functions

CASE <t est - expr >
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END
Caution
Matching is done with the “=" operator, so if <t est - expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.
Example:

sel ect nane,

age,
decode(upper (sex),
"M, 'Mle',
"F', 'Fenuale',
" Unknown'),
religion

from peopl e

See also: CASE, Simple CASE

EXP()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural exponential, e"™¢"
Result type: DOUBLE PRECISION
Syntax:
EXP (nunber)

See also: LN()

EXTRACT()

Availablein: DSQL, ESQL, PSQL
Added in: IB 6
Changedin: 2.1

Description: Extracts and returns an element from aDATE, TIME or TIMESTAMP expression. Thisfunction was
already added in InterBase 6, but not documented in the Language Reference at the time.

168

Internal functions

Result type: SMALLINT or NUMERIC
Syntax:

EXTRACT (<part> FROM <dat eti me>)

<part > = YEAR | MONTH | VEEK
| DAY | VEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND | M LLI SECOND

<datetinme> ::= a DATE, TIME or TI MESTAMP expression

The returned data types and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from aDATE or YEAR from a TIME), an error occurs.

Table 14.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday
YEARDAY SMALLINT 0-365 0=January 1
HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as

fraction

MILLISECOND NUMERIC(9,1) 0.0-999.9 brokenin2.1,2.1.1
MILLISECOND

Added in: 2.1 (with bug)
Fixedin: 2.1.2

Description: Firebird 2.1 and up support extraction of the millisecond fromaTIME or TIMESTAMP. Thedatatype
returned is NUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

169

Internal functions

WEEK
Added in: 2.1

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number from aDATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its daysin the new year. The first 1-3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1-3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and Y EAR results. For instance, 30 December 2008 liesin week 1 of 2009,
so“extract (week fromdate ' 30 Dec 2008')” returns 1. However, extracting Y EAR always gives
the calendar year, which is 2008. In this case, WEEK and Y EAR are at odds with each other. The same happens
when thefirst days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas 1SO-8601
specifies 7.

FLOOR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the largest whole number smaller than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (nunber)

Important

If the external function FLOOR is declared in your database, it will override theinternal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: CEIL() / CEILING()

GEN_ID()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

Description: Increments agenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

170

Internal functions

Result type: BIGINT

Syntax:
CEN_I D (generator-nane, <step>)
<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step valueslower than 1 may compromise
your data'sintegrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns a universaly unique ID as a 16-byte character string.
Result type: CHAR(16) CHARACTER SET OCTETS
Syntax:
GEN_UUI D ()
Example:

sel ect gen_uui d() fromrdb$dat abase
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

See also: UUID_TO_CHAR(), CHAR_TO_UUID()

HASH()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns a hash value for the input string. This function fully supports text BLOBs of any length
and character set.

Result type: BIGINT

171

Internal functions

Syntax:

HASH (string)

HF()

Availablein: DSQL, PSQL
Added in: 2.0

Description: 11F takesthreearguments. If thefirst evaluatestot r ue, the second argument isreturned; otherwise
thethird is returned.

Result type: Depends on input.
Syntax:

I1'F (<condition> ResultT, ResultF)

<condition> ::= A bool ean expression.
Example:
select iif(sex ="'M, 'Sir', '"Madam) from Custoners

IIF(Cond, Resul t 1, Resul t 2) isashortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can aso compare lIF to theternary “? : " operator in C-like languages.

LEFT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:
LEFT (string, |ength)

» Thisfunction fully supportstext BLOBs of any length, including those with a multi-byte character
Set.

» If stringisaBLOB, theresult isaBLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

172

Internal functions

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LN (nunber)

* Anerorisraised if the argument is negative or O.

Important

If the external function LN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

LOG()

Availablein: DSQL, PSQL
Added in: 2.1
Changedin: 2.5
Description: Returns the x-based logarithm of y.
Result type: DOUBLE PRECISION
Syntax:
LGG (x,)

» If either argument is O or below, an error is raised. (Before 2.5, this would result in NaN, 1 NF
or 0, depending on the exact values of the arguments.)

* If both arguments are 1, NaN s returned.

e Ifx=21andy <1, -l NFisreturned.

173

Internal functions

e Ifx=21andy >1, | NFisreturned.

Important

If the external function LOG is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()

Availablein: DSQL, PSQL

Added in: 2.1

Changedin: 2.5

Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION

Syntax:

LOGLO (nunber)

* Anerorisraised if the argument is negative or 0. (In versions prior to 2.5, such values would
result in NaN and -1 NF, respectively.)

Important

If the external function LOGLO0 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOWER()

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Changedin: 2.1

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is

returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

Result type: (VAR)CHAR or BLOB

Syntax:

LOVER (str)

174

Internal functions

Note

Because LOWER is a reserved word, the internal function will take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitaisation, asin" LONER' (str).

Example:

sel ect Sheriff from Towns
where | ower (Name) = 'cooper''s valley'

See also: UPPER

LPAD()

Availablein: DSQL, PSQL

Added in: 2.1

Changed in: 2.5 (backported to 2.1.4)

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR or BLOB

Syntax:

LPAD (str, endlen [, padstr])

This function fully supports text BLOBs of any length and character set.
e |fstr isaBLOB, theresultisaBLOB. Otherwise, the result isaVARCHAR(endl en).
e If padstr isgivenand equals' ' (empty string), no padding takes place.

» If endl enislessthanthecurrent string length, the stringistruncatedtoendl en, evenif padstr
isthe empty string.

I mportant

If the external function LPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Note

In Firebird 2.1-2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to amore modest size. Thisis no longer the case.

Examples:
Ipad ('Hello', 12) -- returns ' Hel | o'
Ipad (‘Hello', 12, '-') -- returns '------- Hel | o'

175

Internal functions

lpad ('Hello', 12, '") -- returns 'Hello'
Ipad (' Hello', 12, 'abc') -- returns 'abcabcaHel | o'
Il pad (' Hello', 12, 'abcdefghij') -- returns 'abcdefgHel |l o'
Ipad ('Hello', 2) -- returns 'He'
lpad ('Hello', 2, "-") -- returns ' He'
Ipad (‘Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: RPAD()

MAXVALUE()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returnsthe maximum valuefrom alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBS of any length and character set.

Result type: Varies
Syntax:
MAXVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returnsthe minimum value from alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBS of any length and character set.

Result type: Varies
Syntax:

M NVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

176

Internal functions

See also: MAXVALUE()

MOD()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the remainder of an integer division.
Result type: INTEGER or BIGINT

Syntax:

MOD (a, b)

» Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8
mod 3), not 0.

Important

If the external function MOD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

NULLIF()

Availablein: DSQL, PSQL
Added in: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.
Syntax:
NULLI F (<expl>, <exp2>)
Example:
sel ect avg(nullif(Wight, -1)) from Fat Peopl e
This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,

since AVG skips NULL data. Presumably, -1 indicates “weight unknown™ in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.

177

Internal functions

OCTET_LENGTH()

Availablein: DSQL, PSQL

Addedin: 2.0

Changedin: 2.1

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may

be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER

Syntax:

OCTET_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

sel ect octet length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet length(_iso08859 1 'GuR di!') fromrdb$dat abase
-- returns 8: 0 and [take up one byte each in | S08859 1

sel ect octet_length

(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 10: 0 and B take up two bytes each in UTF8

sel ect octet_length
(cast (_iso08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase
-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

Seealso: BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Availablein: DSQL, PSQL

178

Internal functions

Added in: 2.1

Description: Overwrites part of astring with another string. By default, the number of characters removed from
the host string equal sthelength of the replacement string. With the optional fourth argument, the user can specify
adifferent number of charactersto be removed.

Result type: VARCHAR or BLOB
Syntax:
OVERLAY (string PLACI NG repl acement FROM pos [FOR | engt h])

» Thisfunction supports BLOBs of any length.

e If string or replacenent is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(Nn) with n the sum of thelengthsof st ri ng andr epl acenent .

» Asusua in SQL string functions, pos is 1-based.
» If posisbeyondtheend of st ri ng, repl acenent isplaced directly after st ri ng.

* If the number of characters from pos to the end of string is smaler than the length of
repl acenent (or than the | engt h argument, if present), stri ng is truncated at pos and
repl acenent placed after it.

» Theeffect of a“FOR 0" clauseisthat r epl acenment issmply inserted into st ri ng.
e If any argument isNULL, theresult isNULL.

» If pos orl engt h isnot awhole humber, bankers rounding (round-to-even) is applied, i.e. 0.5
becomes O, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello' from5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello' from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello" from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from2 for 0) -- r. 'CHel |l ooodbye'
overlay (' Goodbye' placing 'Hello' from2 for 3) -- r. 'GHell obye'
overlay (' Goodbye' placing 'Hello' from2 for 6) --r. 'CGHello
overlay (' Goodbye' placing 'Hello' from2 for 9) --r. "CHello'
overlay (' Goodbye' placing '' from 4) -- returns ' Goodbye'
overlay (' Goodbye' placing '' from4 for 3) -- returns ' Gooe'
overlay (' Goodbye' placing ' from4 for 20) -- returns ' Goo'
overlay ('' placing "Hello'" from 4) -- returns 'Hello'
overlay ('' placing '"Hello' from4 for 0) -- returns 'Hello
overlay ('' placing 'Hello' from4 for 20) -- returns 'Hello'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBS are involved.

179

Internal functions

See also: REPLACE()

PI1()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION
Syntax:
Pl ()

I mportant

If the external function PI is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

POSITION()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match is found, the result is 0.

Result type: INTEGER
Syntax:
PCSI TI ON (<ar gs>)

<args> ::= substr IN string
| substr, string [, startpos]

» The optional third argument is only supported in the second syntax (comma syntax).

» Theempty string isconsidered asubstring of every string. Therefore, if subst r is" (empty string)
andstringisnot NULL, theresultis:

- lif start pos isnot given;
- startposifstartpos lieswithinstri ng;
- Oif startpos liesbeyondtheend of stri ng.

Notice: A bugin Firebird 2.1-2.1.3 and 2.5 causes POSITION to alwaysreturn 1if subst r isthe
empty string. Thisisfixedin 2.1.4 and 2.5.1.

180

Internal functions

» Thisfunction fully supports text BLOBS of any size and character set.

Examples:
position ('be'" in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be") -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4
position ('be', 'To be or not to be', 8) -- returns 17
position ('be', 'To be or not to be', 18) -- returns O
position ('be" in 'Al as, poor Yorick!") -- returns O
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBS are involved.

POWER()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:

POVER (x, V)

* If x negative, an error israised.

I mportant

If the external function POAER is declared in your database as power instead of the default dPower , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDP).

RAND()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns arandom number between 0 and 1.
Result type: DOUBLE PRECISION

Syntax:

RAND ()

181

Internal functions

I mportant

If the external function RAND is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

RDB$GET _CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:
RDB$GET _CONTEXT (' <namespace>', ' <varnane>')

<nanespace>
<var nane>

SYSTEM | USER _SESSI ON | USER_TRANSACTI ON
A case-sensitive string of max. 80 characters

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
SY STEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 14.3. Context variablesin the SY STEM namespace

DB_NAME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

NETWORK _PROTOCOL | The protocol used for the connection: ' TCPv4' ," WNET' ," XNET' or NULL.

CLI ENT_ADDRESS For TCPv4, thisis the IP address. For XNET, the local process ID. For all other
protocolsthis variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.

CURRENT_ROLE Same as global CURRENT _ROLE variable.

SESSION_I D Same as global CURRENT _CONNECT! ON variable.

TRANSACTI ON_I D Same as global CURRENT_TRANSACT! ON variable.

182

Internal functions

| SOLATI ON_LEVEL The isolation level of the current transaction: ' READ COW TTED ,
' SNAPSHOT' or' CONSI STENCY' .

ENG NE_VERSI ON The Firebird engine (server) version. Added in 2.1.

Return valuesand error behaviour: If the polled variable existsin the given namespace, itsvalue will bereturned
as astring of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NUL L isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NUL L
strings.

Examples:
sel ect rdb$get context (' SYSTEM, 'DB NAME) from rdb$dat abase
New. User Addr = rdb$get _context (' SYSTEM, ' CLI ENT_ADDRESS');

insert into MyTabl e (TestField)
val ues (rdb$get _context (' USER_ SESSION, 'MVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$SGET_CONTEXT are actually predeclared UDFs. They arelisted
here asinternal functions because they are always present — the user doesn't have to do anything to make them
avallable.

Availablein: DSQL, ESQL, PSQL
Added in: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER
Syntax:

RDB$SET_CONTEXT (' <nanmespace>', '<varnane>', <value> | NULL)

<nanespace> = USER _SESSI ON | USER_TRANSACTI ON
<var nane> = A case-sensitive string of max. 80 characters
<val ue> = A value of any type, as long as it's castable

to a VARCHAR(255)

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
USER_SESSION context isbound to the current connection. Variablesin USER_TRANSACTION only exist inthe
transaction in which they have been set. When the transaction ends, the context and all the variables defined
init are destroyed.

183

Internal functions

Return values and error behaviour: The function returns 1 if the variable already existed before the call and O
if it didn't. To remove avariable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set context (' USER SESSION , 'MyVar', 493) from rdb$dat abase
rdb$set context (' USER_SESSI ON , ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON', 'Savepoints', 'Yes')
from r db$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

e All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO SAVEPOINT
unaltered, no matter at which point during the transaction they were set.

* DuetoitsUDF-like nature, RDB$SET_CONTEXT can—in PSQL only —be called like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Replaces all occurrences of a substring in a string.
Result type: VARCHAR or BLOB
Syntax:
REPLACE (str, find, repl)
» Thisfunction fully supports text BLOBs of any length and character set.

» If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from the lengthsof st r, fi nd andr epl in such away that even the maximum possible number
of replacements won't overflow the field.

* Iffindistheempty string, st r isreturned unchanged.
* If repl istheempty string, all occurrencesof fi nd are deleted from st r .

« [f any argument isNULL, the result is always NULL, even if nothing would have been replaced.

Examples:
replace ('Billy Wlder', 'il', 'oog') -- returns 'Boogly Wogder'
replace ('Billy Wlder', "il", ") -- returns 'Bly Wier'

184

Internal functions

replace ("Billy Wlder', null, 'oog') -- returns NULL

replace ('Billy Wlder', "'il', null) -- returns NULL

replace ("Billy Wlder', "xyz', null) -- returns NULL (!)

replace ('Billy Wlder', 'xyz', 'abc') -- returns 'Billy WIder'

replace ("Billy WIder", 'Y, "abc") -- returns 'Billy WIlder'
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBs are involved.

See also: OVERLAY()

REVERSE()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns a string backwards.
Result type: VARCHAR

Syntax:

REVERSE (str)

Examples:
reverse ('spoonful') -- returns 'l ufnoops'
reverse (‘"Was it a cat | saw?') -- returns '?was | tac a ti saW
Tip

This function comesin very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_email on people
conputed by (reverse(enmnil));

select * from peopl e
where reverse(enail) starting with reverse('.br');

RIGHT()

Availablein: DSQL, PSQL
Added in: 2.1

185

Internal functions

Description: Returns the rightmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:

RI GHT (string, |ength)

» Thisfunction supports text BLOBs of any length, but has abug in versions 2.1-2.1.3 and 2.5 that
makes it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has
been fixed in versions 2.1.4 and 2.5.1.

» If stringisaBLOB, theresult isaBLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, €tc.

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBs are involved.

I mportant

If the external function RI GHT is declared in your database asr i ght instead of the default sri ght , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDP).

See also: LEFT()

ROUND()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE

Syntax:
ROUND (<nunber> [, <scal e>])
<nunber > a nurerical expression

<scal e> ;.= an integer specifying the nunber of decinmal places
toward whi ch shoul d be rounded, e.g.:

186

Internal functions

2 for
1 for
0 for
-1 for
-2 for

Notes:

roundi ng
roundi ng
roundi ng
roundi ng
roundi ng

to
to
to
to
to

t he
t he
t he
t he
t he

near est
near est
near est
near est
near est

mul tiple of 0.01
multiple of 0.1
whol e nunber

mul tiple of 10

mul tiple of 100

» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)

- ROUND(8341.7, -3) returns 8000.0 (not 8000)

- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scaleis O:

- ROUND(45.1212) returns 45

I mportant

¢ |f the external function ROUND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the externa function (UDF).

e |f you are used to the behaviour of the external function ROUND, please notice that the internal function

Availablein: DSQL, PSQL
Addedin: 2.1

Changed in: 2.5 (backported to 2.1.4)

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.

Result type: VARCHAR or BLOB

Syntax:

RPAD (str, endlen [, padstr])

» Thisfunction fully supports text BLOBS of any length and character set.

» If str isaBLOB, theresultisaBLOB. Otherwise, the result isaVARCHAR(endl en).

» If padstr isgivenand equals' ' (empty string), no padding takes place.

» If endl enislessthanthecurrent string length, the stringistruncatedtoendl en, evenif padstr

isthe empty string.

Important

If the external function RPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

187

Internal functions

Note

In Firebird 2.1-2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to amore modest size. Thisis no longer the case.

Examples:

rpad ('Hello', 12) -- returns 'Hello

rpad ('Hello', 12, '-") -- returns "Hello------- '
rpad ('Hello', 12, '") -- returns 'Hello

rpad ('Hello', 12, 'abc') -- returns ' Hel |l oabcabca’
rpad ('Hello', 12, 'abcdefghij') -- returns 'Hell oabcdefg
rpad ('Hello', 2) -- returns ' He'

rpad (‘Hello', 2, '-") -- returns ' He'

rpad (‘'Hello', 2, '") -- returns ' He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBSs are involved.

See also: LPAD()

SIGN()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the sign of the argument: -1, O or 1.
Result type: SMALLINT

Syntax:

SI GN (nunber)

Important

If the external function SI GN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's sine. The argument must be given in radians.

188

Internal functions

Result type: DOUBLE PRECISION
Syntax:

SIN (angl e)

* Any non-NULL result is—obviously —intherange[-1, 1].

Important

If the external function SI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SINH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

SI NH (nunber)

Important

If the external function SI NH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the square root of the argument.

Result type: DOUBLE PRECISION
Syntax:
SQRT (nunber)

Important

If the external function SQRT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

189

Internal functions

SUBSTRING()

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 2.0,2.1,2.15,25.1

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Result type: VARCHAR(n) or BLOB
Syntax:

SUBSTRI NG (str FROM startpos [FOR | ength])

Thisfunction returnsthe substring starting at character position st ar t pos (thefirst position being 1). Without
the FOR argument, it returns al the remaining charactersin the string. With FOR, it returns| engt h characters
or the remainder of the string, whichever is shorter.

InFirebird 1.x, st ar t pos and| engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBSs of any length and character set. If
str isaBLOB, theresultisalso aBLOB. For any other argument type, theresultisaVARCHAR(N). Previoudly,
the result type used to be CHAR(n) if the argument was a CHAR(n) or astring literal.

For non-BLOB arguments, the width of the result field is always equal to the length of st r, regardless of
startpos and | engt h. So, substri ng(' pi nhead" from 4 for 2) will return a VARCHAR(?)
containing the string ' he' .

If any argument is NULL, the result isNULL.

Bugs

e If str isaBLOB and the | engt h argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBS, aways specify char_length(st r) — or a sufficiently high integer — as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was a so backported to 2.1.5.

e A bug in Firebird 2.0 which caused the function to return “false emptystrings’ if st art pos or | engt h
was NULL, has been fixed.

Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongName from1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

190

Internal functions

TAN()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

TAN (angl e)

Important

If the external function TAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TANH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION

Syntax:

TANH (nunber)

* Dueto rounding, any non-NULL result isin the range[-1, 1] (mathematically, it's<-1, 1>).

I mportant

If the external function TANH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()

Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

191

Internal functions

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBs of any length and character set.

Result type: VARCHAR(n) or BLOB
Syntax:

TRIM ([<adj ust>] str)

<adj ust > = {[where] [what]} FROM
wher e 1= BOTH | LEADI NG | TRAI LI NG /* default is BOTH */
what ::= The substring to be renoved (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples:
select trim (' Waste no space ') fromrdb$dat abase

-- returns 'Waste no space'

select trim(leading from' \Waste no space ') from rdb$dat abase
-- returns 'Waste no space

select trim(leading '.' from' Waste no space ') from rdb$dat abase
-- returns ' Waste no space
select trim(trailing '!" from'Help!'!!!") fromrdb$dat abase

-- returns 'Help'

select trim('la" from'lalala | love you Ella') fromrdb$database
-- returns ' | love you E'
select trim('la" from'Lalala | love you Ella') fromrdb$database
-- returns 'Lalala | |ove you E'
Notes:

e |fstr isaBLOB, theresultisaBLOB. Otherwise, itisaVARCHAR(n) with n the formal length of st r.

» The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at st r 's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBs areinvolved.

TRUNC()

Availablein: DSQL, PSQL
Addedin: 2.1

192

Internal functions

Description: Returns the integer part of a number. With the optional scal e argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:

TRUNC (<nunber> [, <scal e>])

<nunber > = a numerical expression
<scal e> ;.= an integer specifying the nunber of decinmal places
toward whi ch should be truncated, e.g.
2 for truncating to a multiple of 0.01
1 for truncating to a nultiple of 0.1
0 for truncating to a whol e nunber
-1 for truncating to a multiple of 10
-2 for truncating to a nultiple of 100

Notes:
» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleisO:

- TRUNC(-163.41) returns -163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC always truncates toward zero, i.e. upward for negative numbers.

UPPER()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.0, 2.1

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBS of any length and character
Set.

Result type: (VAR)CHAR or BLOB
Syntax:

UPPER (str)

193

Internal functions

Examples:
sel ect upper(_i so8859 1 'Débacle')
from r db$dat abase
-- returns 'DEBACLE' (before Firebird 2.0: ' DéBACLE')
sel ect upper(_iso8859 1 'Débéacle' collate fr_fr)
from rdb$dat abase
-- returns ' DEBACLE , follow ng French uppercasing rules

See also: LOWER

UUID_TO_CHAR()

Availablein: DSQL, PSQL
Added in: 2.5
Description: Converts a 16-byte UUID to its 36-character, human-readable ASCI| representation.
Result type: CHAR(36)
Syntax:
UUI D_TO CHAR (uui d)
uuid ::= a string consisting of 16 single-byte characters
Examples:

sel ect uuid _to_char(x' 876C45F4569B320DBCB4735AC3509E5F') from rdb$dat abase
-- returns ' 876C4A5F4- 569B- 320D- BCB4- 735AC3509E5F'

sel ect uuid_to_char(gen_uuid()) fromrdb$dat abase
-- returns e.g. '680D946B- 45FF- DB4E- B103- BB5711529B86'

select uuid to char('Firebird swings!') fromrdb$dat abase
-- returns '46697265- 6269- 7264- 2073- 77696E677321"

See also: CHAR_TO_UUID(), GEN_UUID()

194

Chapter 15

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf
Addedin: IB
Better alternative: Internal function ABS()
Description: Returns the absolute value of the argument.
Result type: DOUBLE PRECISION
Syntax:
abs (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON abs
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_abs' MODULE_NAME 'ib_udf"

aCosS

Library: ib_udf
Addedin: IB
Better alternative: Internal function ACOS()

Description: Returns the arc cosine of the argument.

195

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:
acos (numnber)
Declaration:
DECLARE EXTERNAL FUNCTI ON acos
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_acos' MODULE_NAME 'ib_udf’

addDay

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addhour (atinestanp, nunber)

196

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | I i Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber milliseconds added. Use negative humbers to subtract.
Result type: TIMESTAMP
Syntax:

addmi | | i second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |'i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT "addM | |i Second" MODULE_NAME ' f budf’

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returnsthe first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nut e

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

197

External functions (UDFs)

addMont h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addnmont h (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'’

addSecond

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAWP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addSecond’" MODULE_NAME ' f budf'

addWeek

Library: fbudf

198

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Interna function DATEADD
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addweek (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAMP, | NT
RETURNS TI MESTAMP
ENTRY_PO NT ' addWek' MODULE_NAME ' f budf'’

addYear

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber years added. Use negative numbersto subtract.
Result type: TIMESTAMP
Syntax:
addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear
TI MESTAVP, | NT
RETURNS TI MESTAMP
ENTRY_POI NT ' addYear' MODULE_NAME ' f budf"

asci i _char

Library: ib_udf
Changedin: 1.0, 2.0

Better alternative: Internal function ASCII_CHAR()

199

External functions (UDFs)

Description: Returns the ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT ' 1 B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
withthe NULL keyword, theenginewill passaNUL L argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:
e ascii_char (0) returnsan empty string in all versions, not a character with ASCII value 0.

» Before Firebird 2.0, the result type was CHAR(1).

asci i _val

Library: ib_udf
Addedin: IB
Better alternative: Internal function ASCII_VAL()
Description: Returnsthe ASCII code of the character passed in.
Result type: INTEGER
Syntax:
ascii_val (ch)
Declaration:
DECLARE EXTERNAL FUNCTI ON asci i _val

CHAR(1)
RETURNS | NTEGER BY VALUE

200

External functions (UDFs)

ENTRY_PO NT ' | B_UDF_ascii_val' MODULE_NAMVE 'ib_udf'

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. Theinternal function Ascll_VAL returns 0 in this case.

asin

Library: ib_udf
Added in: IB
Better alternative: Internal function ASIN()
Description: Returns the arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

asi n (nurber)
Declaration:

DECLARE EXTERNAL FUNCTI ON asin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_asin' MODULE_NAME ' i b_udf’

at an

Library: ib_udf
Added in: IB
Better alternative: Internal function ATAN()
Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
atan (numrber)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an
DOUBLE PRECI SI ON

201

External functions (UDFs)

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan' MODULE_NAME 'ib_udf'

at an2

Library: ib_udf
Added in: IB
Better alternative: Internal function ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION
Syntax:
atan2 (nunl, nun®)
Declaration:
DECLARE EXTERNAL FUNCTI ON at an2
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan2' MODULE_NAME 'ib_udf'

bi n_and

Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_AND()
Description: Returns the bitwise AND result of the arguments.
Result type: INTEGER
Syntax:

bi n_and (numl, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_and
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bi n_and’ MODULE_NAME 'ib_udf’

202

External functions (UDFs)

bl n_or

Library: ib_udf
Added in: IB
Better alternative: Internal function BIN_OR()
Description: Returns the bitwise OR result of the arguments.
Result type: INTEGER
Syntax:

bi n_or (nunl, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_or

| NTEGER, | NTEGER

RETURNS | NTEGER BY VALUE
ENTRY_POINT ' I B_UDF_bin_or' MODULE_NAME 'ib_udf'

bi n_xor
Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_XOR()
Description: Returns the bitwise XOR result of the arguments.
Result type: INTEGER
Syntax:
bi n_xor (numl, nunR)
Declaration:
DECLARE EXTERNAL FUNCTI ON bi n_xor
| NTECER, | NTEGER

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bi n_xor' MODULE_NAME 'ib_udf'

ceiling

Library: ib_udf

203

External functions (UDFs)

Added in: IB
Better alternative: Internal function CEIL() / CEILING()
Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

ceiling (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cei ling

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_ceiling’ MODULE_NAME 'ib_udf’

COS

Library: ib_udf
Added in: IB
Better alternative: Internal function COS()
Description: Returns an angle's cosine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

cos (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cos

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cos' MODULE_NAME 'ib_udf'

cosh

Library: ib_udf

Added in: IB

Better alternative: Internal function COSH()

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION

204

External functions (UDFs)

Syntax:
cosh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cosh
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cosh' MODULE_NAME 'ib_udf'

cot

Library: ib_udf
Added in: IB
Better alternative: Internal function COT()
Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

cot (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cot

DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cot' MODULE_NAME 'ib_udf'

dow

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow

205

External functions (UDFs)

TI MESTAMP,
VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also: sdow

dpower

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function POWER()
Description: Returns x to they 'th power.
Result type: DOUBLE PRECISION
Syntax:
dpower (x, vy)
Declaration:

DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI S| ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf'

floor

Library: ib_udf
Addedin: IB
Better alternative: Internal function FLOOR()
Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:
fl oor (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON f I oor
DOUBLE PRECI SI ON

206

External functions (UDFs)

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_floor' MODULE_NAME 'ib_udf'

get Exact Ti nest anp

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: CURRENT _TI MESTANMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT _TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and
up it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision. To measure
timeintervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP
Syntax:
get exactti nestanp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp

TI MESTAMP RETURNS PARAVETER 1
ENTRY_PO NT ' get Exact Ti mest anp'’ MODULE_NAME ' f budf '

| 64r ound
Seer ound.
| 64t runcat e
Seetruncat e.
| n
Library: ib_udf
Addedin: IB

Better alternative: Internal function LN()

Description: Returns the natural logarithm of the argument.

207

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:
[n (nunber)
Declaration:
DECLARE EXTERNAL FUNCTION | n
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' I B_UDF_I n' MODULE_NAME 'ib_udf"

| og

Library: ib_udf

Added in: IB

Changedin: 1.5

Better alternative: Internal function LOG()

Description: In Firebird 1.5 and up, | og(x, y) returns the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x, y)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| og' MODULE_NAME 'ib_udf"

Warning

If any of your pre-1.5 databases use | og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get

wrong results.
| 0g10
Library: ib_udf
Addedin: IB

208

External functions (UDFs)

Better alternative: Internal function LOG10()

Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION

Syntax:

| 0g10 (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON | 0g10
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| 0g10' MODULE_NAME 'ib_udf’

| ower

Library: ib_udf

Added in: IB

Changed in: 2.0

Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the superior internal function LOWER instead.

Result type: VARCHAR(N)

Syntax:

"LOWNER' (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON " LOAER'
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_| ower' MODULE_NAME 'ib_udf"

The above declaration is from the filei b_udf 2. sql . " LOAER" has been surrounded by double-
guotes because LOWER, being a reserved word, cannot be used as an identifier except when quoted.
When you call thefunction, you a so have to add the quotes and use the exact capitalization, otherwise
theinternal function will take precedence. (M ost other internal function namesare not reserved words;
in those cases, the external function prevailsif it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichiscorrect. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

209

External functions (UDFs)

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad
Library: ib_udf
Addedin: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function LPAD()
Description: Returns the input string left-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(N)
Syntax:
| pad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE I T

ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf’

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt hislessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
resultisNULL.

210

External functions (UDFs)

* A NULL endl engt h istreated asif it wereO.

» |f padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r is returned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar wasempty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf
Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(N)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI N 255) NULL
RETURNS CSTRI NG(255) FREE IT
ENTRY_POINT ' IB_UDF_Itrim MODULE _NAME 'ib_udf'

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

211

External functions (UDFs)

nod

Library: ib_udf
Added in: IB
Better alternative: Internal function MOD()
Description: Returns the remainder of an integer division.
Result type: DOUBLE PRECISION
Syntax:

nod (a, b)
Declaration:

DECLARE EXTERNAL FUNCTI ON nod

| NTEGER, | NTEGER

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_nod' MODULE_NAME 'ib_udf'

*nul |if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour * nul | i f functions—for integers, bigints, doubles and strings, respectively —each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (intl, int2)
i 64nullif (bigintl, bigint2)
dnul I'i f (doubl el, doubl e2)
snul lif (stringl, string2)

Asfrom Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

¢ Thesefunctions return NULL when the second argument isNULL, eveniif thefirst argument isaproper vaue.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i 64nullif anddnullif will return wrong and/or bizarreresultsif it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both

L explicitly to the declared type (see declarationsbelow). .|

212

External functions (UDFs)

Declarations:

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64nul |if
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTCR
ENTRY_PO NT " i Nul ['1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON dnul i f
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTCR
ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON snul |i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT " sNul ['1f' MODULE_NAME ' f budf'’

*nvl

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function COALESCE()

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL
replacers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value
of the second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)
snvl (stringl, string2)

Asfrom Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsiif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTI ON i nvl

213

External functions (UDFs)

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18,0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_PO NT "idNvl*® MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT "idNvl*® MODULE _NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_POI NT ' sNvI' MODULE_NAME ' f budf "

pi

Library: ib_udf
Added in: IB
Better alternative: Internal function Pi()
Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION
Syntax:

pi ()
Declaration:

DECLARE EXTERNAL FUNCTI ON pi

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_pi' MODULE_NAME 'ib_udf"

rand

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multiple r and() calls within the same second would
therefore return the same value. If you want that old behaviour in Firebird 2 and up, use sr and() .

214

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:

rand ()
Declaration:

DECLARE EXTERNAL FUNCTI ON rand
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_rand’ MODULE_NAME ' i b_udf’

right

Seesright.

round, i 64r ound

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5,2.1.3

Better alternative: Internal function ROUND()

Description: These functionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)
Syntax:

round (nurber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isroundedto4, but - 3. 5isroundedto- 3. Theinternal function ROUND, available
since Firebird 2.1, rounds al halves away from zero.

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:
DECLARE EXTERNAL FUNCTI ON Round

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2

215

External functions (UDFs)

ENTRY_PO NT ' round" MODULE _NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

RETURNS PARAMETER 2
ENTRY_PO NT ' f bround'" MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround' MODULE_NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can a so perform this update with ALTER EXTERNAL FUNCTION.

r pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function RPAD()
Description: Returns the input string right-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad
CSTRI NG(255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG 255) FREE | T
ENTRY_PO NT ' | B_UDF_rpad’ MODULE_NAME 'ib_udf’

The above declaration is from thefilei b_udf 2. sqgl . The NULL s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NUL Ls are passed to the function as empty strings and the result isastring with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

216

External functions (UDFs)

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

* If endl engt h islessthan st r 'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

« A NULL endl engt h istreated asif it wereO.

» If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to use the internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):

rtrim(str)
Declaration:

DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_POINT ' IB_UDF_rtrim MODULE_NAME 'ib_udf"

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

217

External functions (UDFs)

Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:

sdow (ati nest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOW MODULE_NAME ' f budf'

See also: dow

si gn
Library: ib_udf
Added in: IB
Better alternative: Internal function SIGN()
Description: Returns the sign of the argument: -1, O or 1.
Result type: INTEGER

Syntax:

si gn (nunber)

218

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON si gn
DOUBLE PRECI SI ON

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_si gn' MODULE_NAME ' i b_udf’

sin

Library: ib_udf
Added in: IB
Better alternative: Internal function SIN()
Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

sin (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON sin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_sin' MODULE_NAME 'ib_udf"

si nh

Library: ib_udf
Added in: IB
Better alternative: Internal function SINH()
Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

si nh (numnber)
Declaration:

DECLARE EXTERNAL FUNCTI ON si nh

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_si nh'’ MODULE_NAME ' i b_udf"

219

External functions (UDFs)

sqgrt

Library: ib_udf
Added in: IB
Better alternative: Internal function SQRT()
Description: Returns the sguare root of the argument.
Result type: DOUBLE PRECISION
Syntax:

sqrt (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON sqgrt

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_sqrt’ MODULE_NAME 'ib_udf"

sr and

Library: ib_udf
Addedin: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe samesecondwill returnthe samevaue. Thisisexactly howr and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION
Syntax:
srand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON sr and
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' 1 B_UDF_srand’ MODULE _NAME 'ib_udf’

sri ght

Library: fbudf

220

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function RIGHT()

Description: Returnsthe rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:

sright (str, nunthars)
Declaration:

DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE_NAME ' f budf’

string2bl ob

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function CAST()
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2blob (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,
BLOB RETURNS PARAMETER 2
ENTRY_PO NT 'string2bl ob' MODULE _NAME ' f budf'

strl en

Library: ib_udf
Addedin: IB

Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTH()

221

External functions (UDFs)

Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON strl en
CSTRI NG(32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_strlen' MODULE_NAME 'ib_udf’

substr

Library: ib_udf
Changedin: 1.0,1.5.2, 2.0

Description: Returns a string's substring from st art pos to endpos, inclusively. Positions are 1-based. If
endpos ispast theend of the string, subst r returnsall the charactersfromst ar t pos to the end of the string.
This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG(255) FREE IT
ENTRY_POI NT ' | B_UDF_substr' MODULE NAME 'ib_udf"

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

222

External functions (UDFs)

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InlinterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are dlightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Added in: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h issmaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax:

substrlen (str, startpos, |ength)
Declaration:

DECLARE EXTERNAL FUNCTI ON substrlen
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG 255) FREE_IT
ENTRY_PO NT ' 1B _UDF_substrlen’ MODULE NAME 'ib_udf'

The above declaration isfromthefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL resullt,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

223

External functions (UDFs)

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substr| en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf
Added in: IB
Better alternative: Internal function TAN()
Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

tan (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON tan

DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_tan' MODULE_NAME 'ib_udf'

t anh

Library: ib_udf
Addedin: IB
Better alternative: Internal function TANH()
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
tanh (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON t anh

DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE

224

External functions (UDFs)

ENTRY_PO NT ' | B_UDF_tanh' MODULE_NAME 'ib_udf’

truncate,i 64t runcat e

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Better alternative: Internal function TRUNCY()

Description: These functionsreturn the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)

Syntax:

truncate (nunber)
i 64truncate (bi gnunber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3. Theinterna
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUVERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'’

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' fbudf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf'’

225

External functions (UDFs)

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

226

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SJIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese
data columns using either parameterized queries or literal strings without introducer syntax would fail with
trandliteration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “asis’ but what is stored isan exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no tranditeration
error. When the connection character set isNONE, no attempt ismade in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atranditeration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still reguired when handling
heterogeneous character sets from aclient context that is anything other than NONE. Both methods are shown
below, using character set 1508859 _1 as an example target. Noticethe“_" prefix in the introducer syntax.

Introducer syntax:
_1'SC8B859 1 nystring

Casting:
L CAST (nystring AS VARCHAR(n) CHARACTER SET |SMW859 1) |

227

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who
thoroughly understand its consequences. Knowledge of the various levels of transaction isolation is essential.
WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTS. As stated in the
reference part of this guide, WITH LOCK is not available:

* inasubquery specification;

o forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

» with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardliess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour
isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are
ignored.
isC_tpb_concurrency If arecord is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has

228

Notes

TPB mode Behaviour
+isc_tpb_nowait performed a modification of this record, an update conflict exception is raised
immediately.
isC_tpb_concurrency If therecord is modified by any transaction that has committed since the
_ _ transaction attempting to get explicit lock started, an update conflict exception is
+isc_tpb_wait raised immediately.

If an active transaction is holding ownership on thisrecord (via explicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed | If thereisan active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the
+isc_tpb_wait explicit lock waits for the outcome of blocking transaction and when it finishes,
attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waitsfor the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif thisrecord had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that al records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

229

Notes

The optional “OF <col um- nanmes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- names>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to process the currently-locked row before the next isfetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

* Roalling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

» While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

» Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

» Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking
i. Smple

SELECT * FROM DOCUMENT VWHERE | D=? W TH LOCK
ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGS are programmed in
such away that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL data types. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste

230

Notes

to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most
CSTRING functions—as found in the filei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or cause it to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A special caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that al the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POINT ' | B_UDF_| pad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_POI NT ' | B_UDF_| pad' MODULE_NAME 'ib_udf';

Now you cancal | pad() foral thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, still usethe old style of parameter
passing, inherited from InterBase.

As a conseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with aNULL
keyword after the argument(s) in question, e.g. like this:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it
entry point '"IB UDF Itrim nodule_nane 'ib_udf';

231

Notes

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consulti b_udf 2. sql inthe Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf . sql .

These arethei b_udf functions that have been updated to recognise NULL input and handle it properly:

e ascii_char

e | ower

e | padandr pad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functions remain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . t ri mand subst r * in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of thefunctionslisted aboveunder Firebird 2, and you want
to benefit from the improved NULL handling, run the script i b_udf _upgr ade. sqgl against your database. It
islocated in the Firebird m sc\ upgr ade\i b_udf directory.

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sumsthem al up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
size

1.0,1.0.2 1.0.3 1.5.x 2.0x

lcol | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols | 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 | 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 | 454

232

Notes

The RDB$VALID_BLR field

Thefield RDB$VALID_BLR wasadded to the system tablesRDBSPROCEDURES and RDB$TRIGGERS i n Firebird
2.1. Its purpose is to signal possible invalidation of a PSQL module when a domain or a table column upon
which the module dependsisaltered. If such invalidations occur, RDBSVALID_BLRisset to O for any procedure
or trigger whose codeis no longer valid.

The following query will find the modules that depend on a specific domain and report the state of their RDB
$VALID_BLR fields:

select * from (
sel ect 'Procedure', rdb$procedure_nane, rdb$valid blr fromrdb$procedures
uni on
select 'Trigger', rdb$trigger_nane, rdb$valid_blr fromrdb$triggers
) (type, name, valid)
where exists
(select * from rdb$dependenci es
wher e rdb$dependent _nane = nane and rdb$depended_on_nane = ' MYDOVAI N)

/* Replace MYDOVAIN with the actual domain nane. Use all-caps if the domain
was created case-insensitively. Qtherwi se, use the exact capitalisation. */

The following query will find the modules that depend on a specific table column and report the state of their
RDB$VALID_BLR fields:

select * from(
sel ect 'Procedure', rdb$procedure_nane, rdb$valid_blr fromrdb$procedures
uni on
select 'Trigger', rdb$trigger_name, rdb$valid_blr fromrdb$triggers
) (type, nane, valid)
where exists
(select * fromrdb$dependenci es
wher e rdb$dependent _nane = nane
and rdb$depended_on_nane = ' M\YTABLE' and rdb$fiel d nane = ' MYCOLUW)

/* Replace MYTABLE and MYCOLUW with the actual table and col um nanes.
Use all-caps if the table/colum was created case-insensitively.
O herwi se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID_BLR field. After changing a
domain or table column, it istherefore advisable to have a good look at all the procedures and triggers reported
by the above queries, even those having alinthe“VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR isNULL. This does
not imply that their BLR isinvalid.

The isgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNAME and SHOW TRIGGER TRI GNAME, which display
individual PSQL modules, do not signal invalid BLR.

233

Appendix B:
Reserved words and
keywords — full lists

Reserved words

Full list of reserved wordsin Firebird 2.5:

ADD

ADMIN

ALL

ALTER

AND

ANY

AS

AT

AVG

BEGIN
BETWEEN
BIGINT
BIT_LENGTH
BLOB

BOTH

BY

CASE

CAST

CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
COLLATE
COLUMN
COMMIT
CONNECT
CONSTRAINT
COUNT

CREATE

CROSS
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE

234

Reserved words and keywords — full lists

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR
DATE

DAY

DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DISCONNECT
DISTINCT
DOUBLE
DROP

ELSE

END

ESCAPE
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FETCH
FILTER
FLOAT

FOR
FOREIGN
FROM

FULL
FUNCTION
GDSCODE
GLOBAL
GRANT
GROUP
HAVING
HOUR

IN

INDEX
INNER
INSENSITIVE
INSERT

INT

INTEGER
INTO

IS

JOIN
LEADING
LEFT

LIKE

LONG
LOWER

235

Reserved words and keywords — full lists

MAX
MAXIMUM_SEGMENT
MERGE

MIN

MINUTE
MONTH
NATIONAL
NATURAL
NCHAR

NO

NOT

NULL
NUMERIC
OCTET_LENGTH
OF

ON

ONLY

OPEN

OR

ORDER

OUTER
PARAMETER
PLAN

POSITION
POST_EVENT
PRECISION
PRIMARY
PROCEDURE
RDB$DB_KEY
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
RETURNING_VALUES
RETURNS
REVOKE

RIGHT
ROLLBACK
ROW_COUNT
ROWS
SAVEPOINT
SECOND
SELECT
SENSITIVE

SET

SIMILAR
SMALLINT
SOME
SQLCODE
SQLSTATE (2.5.1)

236

Reserved words and keywords — full lists

START
SUM
TABLE
THEN
TIME
TIMESTAMP
TO
TRAILING
TRIGGER
TRIM
UNION
UNIQUE
UPDATE
UPPER
USER
USING
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WHEN
WHERE
WHILE
WITH
YEAR

Keywords

The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved words,
others aren't.

I <
N
N=
N>

237

Reserved words and keywords — full lists

~>

ABS
ACCENT
ACOS
ACTION
ACTIVE
ADD
ADMIN
AFTER
ALL
ALTER
ALWAYS
AND

ANY

AS

ASC
ASCENDING
ASCIl_CHAR
ASCIl_VAL
ASIN

AT

ATAN
ATAN2
AUTO
AUTONOMOUS
AVG
BACKUP
BEFORE
BEGIN
BETWEEN
BIGINT
BIN_AND
BIN_NOT
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BIT_LENGTH
BLOB
BLOCK
BOTH
BREAK
BY
CALLER
CASCADE
CASE
CAST
CEIL
CEILING
CHAR
CHAR_LENGTH

238

Reserved words and keywords — full lists

CHAR_TO_UUID
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMENT
COMMIT
COMMITTED
COMMON
COMPUTED
CONDITIONAL
CONNECT
CONSTRAINT
CONTAINING
CoSs

COSH

cot

COUNT
CREATE

CROSS

CSTRING
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR

DATA
DATABASE
DATE
DATEADD
DATEDIFF

DAY

DEC

DECIMAL
DECLARE
DECODE
DEFAULT
DELETE
DELETING

DESC
DESCENDING
DESCRIPTOR
DIFFERENCE
DISCONNECT

239

Reserved words and keywords — full lists

DISTINCT
DO
DOMAIN
DOUBLE
DROP
ELSE

END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS
EXIT

EXP
EXTERNAL
EXTRACT
FETCH
FILE
FILTER
FIRST
FIRSTNAME
FLOAT
FLOOR
FOR
FOREIGN
FREE IT
FROM
FULL
FUNCTION
GDSCODE
GEN_ID
GEN_UUID
GENERATED
GENERATOR
GLOBAL
GRANT
GRANTED
GROUP
HASH
HAVING
HOUR

IF

IGNORE

IF

IN
INACTIVE
INDEX
INNER
INPUT_TYPE
INSENSITIVE
INSERT
INSERTING

240

Reserved words and keywords — full lists

INT
INTEGER
INTO

IS
ISOLATION
JOIN

KEY

LAST
LASTNAME
LEADING
LEAVE
LEFT
LENGTH
LEVEL
LIKE
LIMBO
LIST

LN

LOCK

LOG
LOGI10
LONG
LOWER
LPAD
MANUAL
MAPPING
MATCHED
MATCHING
MAX

MAXIMUM_SEGMENT

MAXVALUE
MERGE
MIDDLENAME
MILLISECOND
MIN

MINUTE
MINVALUE
MOD
MODULE_NAME
MONTH
NAMES
NATIONAL
NATURAL
NCHAR

NEXT

NO

NOT

NULL

NULLIF
NULLS
NUMERIC
OCTET_LENGTH

241

Reserved words and keywords — full lists

OF

ON

ONLY

OPEN
OPTION

OR

ORDER
0S_NAME
OUTER
OUTPUT_TYPE
OVERFLOW
OVERLAY
PAD

PAGE
PAGE_SIZE
PAGES
PARAMETER
PASSWORD
Pl

PLACING
PLAN
POSITION
POST_EVENT
POWER
PRECISION
PRESERVE
PRIMARY
PRIVILEGES
PROCEDURE
PROTECTED
RAND
RDBS$DB_KEY
READ

REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
REPLACE
REQUESTS
RESERV
RESERVING
RESTART
RESTRICT
RETAIN
RETURNING
RETURNING_VALUES
RETURNS
REVERSE
REVOKE
RIGHT

242

Reserved words and keywords — full lists

ROLE
ROLLBACK
ROUND
ROW_COUNT
ROWS

RPAD
SAVEPOINT
SCALAR_ARRAY
SCHEMA
SECOND
SEGMENT
SELECT
SENSITIVE
SEQUENCE
SET
SHADOW
SHARED
SIGN
SIMILAR
SIN
SINGULAR
SINH

SIZE

SKIP
SMALLINT
SNAPSHOT
SOME

SORT
SOURCE
SPACE
SQLCODE
SQLSTATE (2.5.1)
SQRT
STABILITY
START
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE

TAN

TANH
TEMPORARY
THEN

TIME
TIMEOUT
TIMESTAMP
TO

243

Reserved words and keywords — full lists

TRAILING
TRANSACTION
TRIGGER
TRIM
TRUNC
TWO_PHASE
TYPE
UNCOMMITTED
UNDO
UNION
UNIQUE
UPDATE
UPDATING
UPPER
USER
USING
UUID_TO_CHAR
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW

WAIT
WEEK
WEEKDAY
WHEN
WHERE
WHILE
WITH
WORK
WRITE
YEAR
YEARDAY

244

Appendix C:
Document History

The exact file history is recorded in the manual module in our CV S tree; see http:/firebird.cvs.sourceforge.
net/viewvc/firebird/manual/

Revision History
0.0 — PV Creation of the document as a copy of the Firebird 2.1 Language
Reference Update with 1Ds, titles, version numbers etc. updated to 2.5.

1.0 12Jun 2011 PV Introduction :: Subject matter: Added “ Security and access control
statements” to first list. Changed ulink to Firebird Documentation
Index (both text and url).

Introduction :: Authorship: Changed percentage of included material to
2-3%.

Introduction: New section Acknowl edgments.

New chapter: New in Firebird 2.5.

Reserved words and keywords: Updated/corrected al thelistsin all

the subsections (except Possibly reserved in future versions). Also
changed/added much of the text above and below the lists.

Reserved words and keywords :: Dropped since InterBase 6: Changed
subsection titles to No longer reserved, still keywords and No longer
reserved, not keywords, for better clarity.

Miscellaneous language el ements: New section Hexadecimal notation
for numerals.

Miscellaneous language el ements: New section Hexadecimal notation
for “ binary” strings.

Data types and subtypes :: BIGINT data type: Added information on
hex notation; added second example.

Data types and subtypes :: BLOB data type :: Text BLOB supportin
functions and operators: Altered “Changed in”; edited 2nd listitem
under “Level of support” (CORE-3233 fixed).

Data types and subtypes :: New character sets: Added 2.5 to “ Changed
in”; added new charset GB18030 and new alias WIN_1258.

Data types and subtypes :: New collations: Added 2.5 to “ Changed

in"; added new collations GB18030_UNICODE (for GB18030) and
UNICODE_CI_AI (for UTF8). Added line on UNICODE_CI_AlI to Note.
Data types and subtypes: New section SQL_NULL data type.

DDL statements: Removed last line from introductory text.

DDL statements: New section CHARACTER SET, with subsection ALTER
CHARACTER SET.

DDL statements:: COLLATION :: CREATE COLLATION: Added
“Changed in”; altered explanation of “UNI" in specific attributes
table; gave table body valign=top; added NUMERIC-SORT to specific
attributes table and added note beneath table.

DDL statements :: DATABASE :: CREATE DATABASE: New subsection
Default collation for the database.

245

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/

Document History

DDL statements :: DATABASE :: ALTER DATABASE :: END BACKUP:
Updated URL of Firebird Documentation Index in Tip.

DDL statements :: DOMAIN :: ALTER DOMAIN: Replaced contents of
Warning with reference to RDB$VALID_BLR note.

DDL statements :: Privileges: GRANT and REVOKE: Moved to chapter
Security and access control.

DDL statements :: PROCEDURE: Changed introductory text (mentioned
executabl e blocks).

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Altered
Syntax (added TYPE OF COLUMN).

DDL statements :: PROCEDURE :: CREATE PROCEDURE: New
subsection TYPE OF COLUMN in parameter and variable declarations.
DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
supported in parameter and variable declarations: Edited and extended
Description. Replaced contents of Warning with reference to RDB
$VALID_BLR note.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: NOT NULL
in variable and parameter declarations. Changed layout of Example
(first line too long for PDF).

DDL statements :: PROCEDURE :: ALTER PROCEDURE: New
subsection Classic Server: Altered procedure immediately visible to
other clients.

DDL statements :: PROCEDURE :: ALTER PROCEDURE: New
subsection TYPE OF COLUMN in parameter and variable declarations.
DDL statements:: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN also for generated (computed) columns.

DDL statements:: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN ... TYPE no longer failsif columnisused in trigger or SP.
DDL statements:: TRIGGER :: CREATE TRIGGER: New subsection
TYPE OF COLUMN in variable declarations.

DDL statements:: TRIGGER :: ALTER TRIGGER: New subsection TYPE
OF COLUMN in variable declarations.

DDL statements:: VIEW :: CREATE VIEW: Added Syntax.

DDL statements:: VIEW :: CREATE VIEW: New subsection Views can
select from stored procedures.

DDL statements:: VIEW :: CREATE VIEW: New subsection Views can
infer column names from derived tables or GROUP BY.

DDL statements:: VIEW :: CREATE VIEW :: Per-column aliases
supported in view definition: Shortened partial Syntax.

DDL statements:: VIEW :: CREATE VIEW :: Full SELECT syntax
supported: Altered “Changed in”. Altered Note on union views.

DDL statements:: VIEW: New sections ALTER VIEW and CREATE OR
ALTER VIEW.

DML statements :: DELETE: Improved formal syntax (val ues ->
<val ues> and added specification of |atter).

DML statements :: EXECUTE BLOCK: Added 2.5 to “Changed in”.
Altered Syntax (added TY PE OF COLUMN).

DML statements :: EXECUTE BLOCK :: Domainsinstead of data types:
Extended Description. Added Warning about collations.

DML statements :: EXECUTE BLOCK: New subsection TYPE OF
COLUMN in parameter and variable declarations.

246

Document History

DML statements :: INSERT: Improved formal syntax (val ue ->
val ue_expr essi on) and removed erroneous space.

DML statements :: UPDATE: Improved formal syntax (val ues ->
<val ues> and added specification of |atter).

DML statements :: UPDATE: New section Changed SET semantics.
PSQL statements: Changed introductory paragraph to mention

executable blocks.

PSQL statements :: DECLARE: Altered Syntax (added TY PE OF

COLUMN). Made itemizedlist after Syntax
PSQL statements :: DECLARE :: DECLARE

compact.
with DOMAIN instead of

datatype: Extended Description. Replaced contents of Warning with

reference to RDB$VALID_BLR note.

PSQL statements :: DECLARE: New subsection TYPE OF COLUMN in

variable declaration.

PSQL statements :: EXECUTE STATEMENT
Altered Description. Added Syntax. Added
subsections.

PSQL statements :: EXECUTE STATEMENT

: Added “Changed in”.
paraintroducing following

.2 Any number of data rows

returned: Improved Syntax block. Removed spaces inside parentheses

in Example.

PSQL statements :: EXECUTE STATEMENT
performance.

PSQL statements :: EXECUTE STATEMENT

: New section Improved

: New section WITH

{AUTONOMOUS|COMMON} TRANSACTION.

PSQL statements :: EXECUTE STATEMENT
PRIVILEGES.

PSQL statements :: EXECUTE STATEMENT
[DATA SOURCE].

PSQL statements :: EXECUTE STATEMENT
PASSWORD and ROLE.

PSQL statements :: EXECUTE STATEMENT
statements.

PSQL statements :: EXECUTE STATEMENT
STATEMENT: Edited item 3 (performance).
Edited fina paragraph (less negative).

: New section WITH CALLER
: New section ON EXTERNAL
: New section ASUSER,

: New section Parameterized

:: Caveats with EXECUTE
Removed items 4 and 6.

PSQL statements: New section IN AUTONOMOUS TRANSACTION.

PSQL statements: New section Subqueries
New chapter: Security and access control.
Security and access control: N
Security and access control ::
DDL chapter. Changed id.
Security and access control ::
GRANTED BY.

Security and access control ::
REVOKE ALL ON ALL.
Security and access control ::
OPTION: Changed id.

as PSQL expressions.

ew section ALTER ROLE.
GRANT and REVOKE: Moved here from

GRANT and REVOKE: New section

GRANT and REVOKE: New section

GRANT and REVOKE :: REVOKE ADMIN

Security and access control
Security and access control
Security and access control
commands.

: New section The RDB$SADMIN role.
: New section AUTO ADMIN MAPPING.
: New section SQL user management

Operators and predicates. New section SMILAR TO.

247

Document History

Aggregate functions :: LIST(): Added “Changed in” formalpara.

Edited second Syntax note (about separator). Removed Warning about
truncation bug in 2.1-2.1.3.

Internal functions:: ASCII_VAL(): Edited listitem about bug (mentioned
2.5.x versions).

Internal functions:: ATAN2(): Edited 3rd Syntax note (mentioned error
raised in Fb 3).

Internal functions:: CAST(): Added 2.5 to “Changed in”. Altered
Syntax (added TYPE OF COLUMN). Added formalpara Casting to a
column's type.

Internal functions: New section CHAR TO_UUID().

Internal functions:: DATEADD(): WEEK unit added and sub-DAY units
allowed with DATES: Added “Changed in”. Edited Description, Syntax,
2nd listitem after Syntax, and added additional example.

Internal functions :: DATEDIFF(): WEEK unit added and sub-DAY units
allowed with DATES: Added “Changed in”. Edited Description, Syntax,
and 2nd listitem after Syntax.

Internal functions :: EXTRACT(): Corrected millisecond range in table
(0.0000 -> 0.0).

Internal functions:: EXTRACT() :: MILLISECOND: Removed Bug alert
for 2.1-2.1.1.

Internal functions:: GEN_UUID(): Added Example. Added links to new
UUID functions.

Internal functions:: LOG(): Added “Changed in”. Edited al the
listitems under Syntax.

Internal functions:: LOG10(): Added “Changed in”. Edited listitem
under Syntax.

Internal functions:: LOWER(): Replaced Important after Syntax with
Note, with different text.

Internal functions:: LPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions:: OVERLAY(): Changed 1st word of Description
(“Replaces’ -> “Overwrites’). Shortened 1st listitem after Syntax:
removed description of 2.1-specific bug.

Internal functions :: RDB$GET_CONTEXT(): Added

ENG NE_VERSI ON context var (added in 2.1).

Internal functions:: RIGHT(): Edited 1st listitem after Syntax, about
CORE-3228.

Internal functions:: RPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions:: SUBSTRING(): Added 2.1.5 and 2.5.1 to “Changed
in”. Noted fixing of first bugin 2.1.5and 2.5.1.

Internal functions: New section UUID_TO_CHAR().

External functions :: addWeek: Added “Better alternative”. Removed
“The DATEADD dlternative” formalpara.

External functions:: | ower : Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
External functions:: r ound, i 64r ound: Removed bug alert (fixed
before 2.5).

External functions:: t runcat e, i 64t r uncat e: Removed bug alert
(fixed before 2.5).

248

Document History

11

8 Oct 2011

PV

Notes. New section The RDB$VALID_BLR field. This note contains
the (heavily edited and extended!) text previously contained in the
Warnings in ALTER DOMAIN, CREATE PROCEDURE :: Domains
supported in parameter and variable declarations and DECLARE ::
DECLARE with DOMAIN instead of datatype.

New appendix: Reserved words and keywords — full lists.
Document history: Link to CV S changed, points directly to manual
modul e now.

License Notice: Copyright end year 2011.

First publication, based on the Firebird 2.1 Language Reference
Update with the above changes for 2.5 added (adding 25-30% to the
size).

articl ei nf o and Introduction :: Versions covered: Added 2.5.1to
covered versions.

New in Firebird 2.5: Edited first para (mentioned 2.5.1).

New in Firebird 2.5: Started all 10 subsections with “Changed since
Firebird 2.1", for clarity.

New in Firebird 2.5 :: Reserved words and keywords: Added
SQLSTATE to “Newly reserved words’. Changed “New keywords’ to
“New non-reserved keywords’.

New in Firebird 2.5 :: Context variables: New subsection.

Reserved words and keywords :: Added since InterBase 6 :: Newly
reserved words: Added SQLSTATE.

Reserved words and keywords :: Added since InterBase 6 :: New
keywords: Renamed this section to New non-reserved keywords.
Miscellaneous language elements :: Shorthand casts: Renamed
Shorthand datetime casts.

Miscellaneous language elements :: Shorthand datetime casts: Added
Note warning that value stays the same as long as the statement
remains prepared.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Shortened
rel name.col nane tor el .col in Syntax, to keep line length within
bounds for PDF.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: TYPE

OF COLUMN in parameter and variable declarations: Moved title
“Warnings’ from itemizedlist to parent warning, where it belongs.
DML statements :: SELECT :: ORDERBY :: Order by column alias:
Corrected section title: Order by column alias.

PSQL statements :: EXECUTE STATEMENT :: ON EXTERNAL

[DATA SOURCE] :: Exception handling: isc_eds connection,
isc_eds_statement -> eds_connection, eds_statement.

Context variables :: CURRENT _TI ME: Edited second Note to warn
against shorthand syntax.

Context variables :: CURRENT _TI MESTAMP: Edited second Note to
warn against shorthand syntax.

Context variables :: GDSCODE: Rewrote Description in light of new, so
far undocumented behaviour since Firebird 2.0 (!). Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.

Context variables:: ' NOW : Edited the two existing Notes and
inserted one about the freeze effect of the shorthand syntax. In the last

249

Document History

12

18 Oct 2011

PV

Note, removed the link elements from around CURRENT _TI VE and
CURRENT_TI MESTANP.

Context variables :: SQLCODE: Added “Changed in” and “Deprecated
in” formal paras. Rewrote Description in light of new, so far
undocumented behaviour since Firebird 2.0 (!). Added Notice at the
end (also about the deprecation).

Context variables:: SQLSTATE: New section (variable implemented in
2.5.1).

Internal functions:: CAST(): Added notice that when using the
shorthand syntax, the value stays the same as long as the statement
remains prepared.

Reserved words and keywords — full lists: Added SQLSTATE to both
Reserved words and Keywords.

DML statements :: SELECT: New subsection [AS] beforerelation alias.

250

Appendix D:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the
“License”); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at http://www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.5 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008-2011. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry
Y emanov.

Included portions are Copyright (C) 2001-2010 by their respective authors. All Rights Reserved.

251

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship
	Acknowledgments

	New in Firebird 2.5
	Reserved words and keywords
	Miscellany
	Data types and subtypes
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	PSQL statements
	Security and access control
	Context variables
	Operators and predicates
	Aggregate functions
	Internal functions

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New non-reserved keywords

	Dropped since InterBase 6
	No longer reserved, still keywords
	No longer reserved, not keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Hexadecimal notation for numerals
	Hexadecimal notation for “binary” strings
	Shorthand datetime casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB support in functions and operators
	Various enhancements

	SQL_NULL data type
	Rationale
	Use in practice

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	CHARACTER SET
	ALTER CHARACTER SET

	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated
	Default collation for the database
	DIFFERENCE FILE parameter

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	PROCEDURE
	CREATE PROCEDURE
	TYPE OF COLUMN in parameter and variable declarations
	Domains supported in parameter and variable declarations
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	Classic Server: Altered procedure immediately visible to other clients
	COLLATE in variable and parameter declarations
	Domains supported in parameter and variable declarations
	NOT NULL in variable and parameter declarations
	Restriction on altering used procedures
	TYPE OF COLUMN in parameter and variable declarations

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN also for generated (computed) columns
	ALTER COLUMN ... TYPE no longer fails if column is used in trigger or SP
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	GENERATED ALWAYS AS
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of data types
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of data types
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Views can select from stored procedures
	Views can infer column names from derived tables or GROUP BY
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base table can be made insertable

	ALTER VIEW
	CREATE OR ALTER VIEW
	RECREATE VIEW

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Domains instead of data types
	TYPE OF COLUMN in parameter and variable declarations

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	[AS] before relation alias
	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named columns JOIN
	Natural JOIN

	ORDER BY
	Order by column alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	Changed SET semantics
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	TYPE OF COLUMN in variable declaration
	COLLATE in variable declaration
	NOT NULL in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Improved performance
	WITH {AUTONOMOUS|COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	AS USER, PASSWORD and ROLE
	Parameterized statements
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	IN AUTONOMOUS TRANSACTION
	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	Subqueries as PSQL expressions
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Security and access control
	ALTER ROLE
	GRANT and REVOKE
	GRANTED BY
	REVOKE ALL ON ALL
	REVOKE ADMIN OPTION

	The RDB$ADMIN role
	In normal databases
	Granting the RDB$ADMIN role in a normal database
	Using the RDB$ADMIN role in a normal database

	In the security database
	Granting the RDB$ADMIN role in the security database
	Using the RDB$ADMIN role in the security database

	AUTO ADMIN MAPPING
	In normal databases
	In the security database

	SQL user management commands
	CREATE USER
	ALTER USER
	DROP USER

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Text BLOB concatenation
	Result type VARCHAR or BLOB
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SIMILAR TO
	Building regular expressions
	Characters
	Wildcards
	Character classes
	Quantifiers
	OR-ing terms
	Subexpressions
	Escaping special characters

	SOME

	Aggregate functions
	LIST()
	MAX()
	MIN()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_TO_UUID()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()
	UUID_TO_CHAR()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird versions
	The RDB$VALID_BLR field

	B. Reserved words and keywords – full lists
	Reserved words
	Keywords

	C. Document History
	D. License notice

